Abstract

This study proposes a modified collocated parameter model to estimate the effective thermal conductivity (keff) of two-phase wire mesh materials. The study focused on the influence of parameters, primary as well as secondary, on the effective thermal conductivity of a wire mesh, namely, thermal conductivity ratio (α), concentration (γa), mesh number (M), and thermal contact conductance at the wire-to-wire interfacial area were all investigated in detail over a different temperature range in the normal to the wire mesh. The analytical expressions for effective thermal conductivity in the form of algebraic equations were derived by adopting the solid square cylinder unit-cell-based thermal resistance method for a three-dimensional spatially in-line touching periodic medium. The effective thermal conductivities of different wire mesh materials with solid–fluid combinations, possessing conductivity ratios of 1–10,000 and concentrations of 0–0.8, are predicted for various temperatures at constant pressure regimes using the developed model. Furthermore, the developed model was applied to estimate the effective thermal conductivities of brass and stainless-steel wire mesh, which are compared with values measured using the modified transient plane source (MTPS) instrument over the temperature range 283–460 K. For the brass and stainless-steel mesh—water, silicone oil, and air combinations, the estimated values of effective thermal conductivity obtained from the present model show an average deviation of fluids ± 2.6%, with air ± 4.4% in the z-direction, respectively, concerning the ones obtained from the experiments.

References

1.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford
.
2.
Rayleigh
,
L.
,
1892
, “
On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium
,”
Philos. Mag.
,
34
(
211
), pp.
481
502
.
3.
Krischer
,
O.
,
1956
,
Die Wissenschaftlichan Grundlagen der Trocknungstechnik
,
Springer-Verlag,
Heidelberg, Germany
.
4.
Wiener
,
O.
,
1912
, “
The Theory of Mixtures for Fields With Constant Currents. Akademic der wissenschaften
,”
Leipz. Abh. Der Math.-Phys. Kl
,
32
(
507
), pp.
332
338
.
5.
ESDU
,
1979
, “
Heat Pipes-Properties of Common Small-Pore Wicks
,” Data Report No. 79013, Engineering Sciences Data Unit, London, UK.
6.
Alexander
,
E. G.
,
1972
, “
Structure–Property Relationships in Heat Pipe Wicking Materials
,”
Ph.D. dissertation
,
North Carolina State University
,
Raleigh, NC
.
7.
Haijun
,
M.
,
Zhao
,
H.
,
Wang
,
X.
,
Cao
,
R.
,
Wan
,
Z.
, and
Tao
,
S.
,
2022
, “
Experimental Study on the Heat Transfer Performance of a Stainless-Steel Heat Pipe With Sintered Fiber Wick
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051013
.
8.
Koh
,
J. C. Y.
, and
Fortini
,
A.
,
1973
, “
Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials
,”
Int. J. Heat Mass Transfer
,
16
(
11
), pp.
2013
2022
.
9.
Kurian
,
R.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2016
, “
Experimental Investigation of Convective Heat Transfer in a Vertical Channel With Brass Wire Mesh Blocks
,”
Int. J. Therm. Sci.
,
99
, pp.
170
179
.
10.
Fugmann
,
H.
,
Laurenz
,
E.
, and
Schnabel
,
L.
,
2017
, “
Wire Structure Heat Exchangers—New Designs for Efficient Heat Transfer
,”
Energies
,
10
(
9
), p.
1341
.
11.
Nield
,
D. A.
,
1991
, “
Estimation of the Stagnant Thermal Conductivity of Saturated Porous Media
,”
Int. J. Heat Mass Transfer
,
34
(
6
), pp.
1575
1576
.
12.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
13.
Wan
,
Z.
,
Wang
,
X.
,
Zou
,
S.
, and
Deng
,
J.
,
2019
, “
Effective Thermal Conductivity of Stainless-Steel Fiber Sintered Felt With Honeycombed Channels
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021002
.
14.
Chang
,
W. S.
,
1990
, “
Porosity and Effective Thermal Conductivity of Wire Screens
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
5
9
.
15.
Vansant
,
J. H.
, and
Malet
,
R.
,
1975
, “
Thermal Conductivity of Some Heat Pipe Wicks
,”
Lett. Heat Mass Transfer
,
2
(
3
), pp.
199
206
.
16.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. M.
,
1995
, “
A Lumped Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
264
269
.
17.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. M.
,
1995
, “
Effective Stagnant Thermal Conductivity of Wire Screens
,”
AIAA J. Thermophys.
,
10
(
3
), pp.
542
545
.
18.
Kim
,
D. K.
,
Marotta
,
E. E.
, and
Fletcher
,
L. S.
,
2010
, “
Thermal Modeling of a Multilayer Insulation System
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091303
.
19.
Xu
,
J.
, and
Wirtz
,
R. A.
,
2005
, “
In-Plane Effective Thermal Conductivity of Symmetric Diamond-Weave Screen Laminates
,”
J. Electron. Package
,
127
(
3
), pp.
353
356
.
20.
Li
,
C.
, and
Peterson
,
G. P.
,
2006
, “
The Effective Thermal Conductivity of Wire Screen
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4095
4105
.
21.
Marcus
,
B. D.
,
1972
, “
Theory and Design of Variable Conductance Heat Pipes
,” NASA Report No. NASA-CR-2018.
22.
Armour
,
J. C.
, and
Cannon
,
J. N.
,
1968
, “
Fluid Flow Through Woven Screens
,”
AlChE J.
,
14
(
3
), pp.
415
420
.
23.
Tsotsas
,
E.
, and
Martin
,
M.
,
1987
, “
Thermal Conductivity of Packed Beds: A Review
,”
Chem. Eng. Process
,
22
(
1
), pp.
19
37
.
24.
Jayachandran
,
S.
, and
Reddy
,
K. S.
,
2019
, “
Estimation of Effective Thermal Conductivity of Packed Beds Incorporating Effects of Primary and Secondary Parameters
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
392
408
.
25.
Nozad
,
I.
,
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1985
, “
Heat Conduction in Multiphase Systems—I: Theory and Experiments for Two-Phase Systems
,”
Chem. Eng. Sci.
,
40
(
5
), pp.
843
855
.
26.
Chan
,
C. K.
, and
Tien
,
C. L.
,
1973
, “
Conductance of Packed Spheres in Vacuum
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
302
308
.
27.
Dupade
,
V.
,
Premachandran
,
B.
,
Rengasamy
,
R. S.
, and
Talukdar
,
P.
,
2022
, “
Estimation of Temperature Dependent Effective Thermal Conductivity and Specific Heat of Thermally Bonded High Bulk Nonwoven Exposed to Sub-Zero Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
6
), p.
061014
.
28.
Reddy
,
K. S.
, and
Jayachandran
,
S.
,
2017
, “
Investigations on Design and Construction of a Square Guarded Hot Plate (SGHP) Apparatus for Thermal Conductivity Measurement of Insulation Materials
,”
Int. J. Therm. Sci.
,
120
, pp.
136
147
.
29.
Gustafsson
,
S. E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
,
62
(
3
), pp.
797
804
.
30.
Jayachandran
,
S.
,
Prithiviraajan
,
R. N.
, and
Reddy
,
K. S.
,
2017
, “
Characterization of Various Two-Phase Materials Based on Thermal Conductivity Using Modified Transient Plane Source Method
,”
Proceedings of the AIP Conference
,
India
,
Sept. 13–12, 2007
, pp.
1
6
, Paper No. 020008, 1859(1).
31.
Mathis
,
N.
,
2000
, “
New Transient Non-Destructive Technique Measures Thermal Effusivity and Diffusivity
,”
Proceedings of the 25th International Thermal Conductivity Conference
,
Ann Arbor, MI
,
June 13–16
, pp.
3
14
.
32.
Wooden
,
N.
,
2008
,
Operating Procedure for the TCi: Small Volume Test Kit for Thermal Conductivity Testing
,
C-Therm Technologies
,
Amherst, NS, Canada
.
You do not currently have access to this content.