Abstract

An integrated airfoil alkali metal high-temperature heat pipe structure is proposed for the air rudder. The heat transfer properties of lithium and sodium are analyzed, and the equal-thickness test pieces are designed and prepared. The sonic limit, condensation limit, viscosity limit, entrainment limit, capillary limit and boiling limit are calculated theoretically, and the corresponding feasible working areas are drawn according to each limit curve. It is found that the optimal working temperature range of the test piece is 800∼1500 K. The effects of heating power and placement angle on the start-up time, isothermal performance, and heat transfer performance of the test piece are studied by experiments. The increase in heating power is helpful to shorten the start-up time and improve the isothermal performance and heat transfer performance of the test piece. The placement angle has little effect on the start-up time, but it has an effect on the isothermal performance and heat transfer performance.

References

1.
Xu
,
B.
,
Li
,
J.
,
Lu
,
N.
, and
Wang
,
C.
,
2023
, “
Experimental Study on Heat Transfer Characteristics of High-Temperature Heat Pipe
,”
Therm. Sci.
,
27
(
1A
), pp.
1
11
.
2.
Rivers
,
H. K.
, and
Glass
,
D. E.
,
2006
, “
Advances in Hot-Structure Development
,” NASA Report No. 20060020757.
3.
Qiu
,
C.
, and
Chen
,
Z.
,
2012
, “
Research on Thermal Structure Design and Analysis Technology of Hypersonic Vehicle
,”
Aircr. Des.
,
32
(
6
), pp.
6
14
. (In Chinese)
4.
Silverstein
,
C. C.
,
1971
, “
A Feasibility Study of Heat-Pipe-Cooled Leading Edges for Hypersonic Cruise Aircraft
,” NASA Report No. CR-1857.
5.
Peeples
,
M. E.
,
Reeder
,
J. C.
, and
Sontag
,
K. E.
,
1979
, “Thermostructural Applications of Heat Pipes,” NASA Report No. CR-159096.
6.
Steeves
,
C. A.
,
He
,
M. Y.
,
Valdevit
,
L.
,
Kasen
,
S.
, and
Evans
,
A. G.
,
2007
, “
Metallic Structural Heat Pipes as Sharp Leading Edges for Mach 7 Vehicles
,”
Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition
,
Seattle, WA
,
Nov. 11–15
, pp.
865
872
.
7.
Steeves
,
C. A.
,
He
,
M. Y.
, and
Evans
,
A. G.
,
2009
, “
The Influence of Coatings on the Performance of Structural Heat Pipes for Hypersonic Leading Edges
,”
J. Am. Ceram. Soc.
,
92
(
2
), pp.
553
555
.
8.
Kasen
,
S. D.
,
2013
, “
Thermal Management at Hypersonic Leading Edges
,”
Ph.D. dissertation
,
University of Virginia
,
Charlottesville, VA
.
9.
Harrison
,
B.
,
2014
, “
Neutron Imaging of Lithium (li) Coolants Inside High Temperature Niobium (nb) Heat Pipes
,”
Ph.D. dissertation
,
The University of Tennessee
,
Knoxville, TN
.
10.
Jiang
,
G.
,
Ai
,
B.
,
Yu
,
J.
, and
Chen
,
L.
,
2008
, “
Application of High Temperature Heat Pipe in Dredging Thermal Protection Technology
,”
Proceedings of the Chinese National Heat Pipe Conference
,
Weihai, China
,
Sept. 7–11
,
p. 72
.
11.
Liu
,
D.
,
Zheng
,
X.
,
Wang
,
F.
, and
Liu
,
Y.
,
2010
, “
Heat Transfer and Heat Protection Mechanism of Built-In High Temperature Heat Pipe Thermal Protection Structure
,”
J. Tsinghua Univ. (Nat. Sci. Ed.)
,
50
(
7
), pp.
1094
1098
. (In Chinese)
12.
Qu
,
W.
, and
Wang
,
H.
,
2011
, “
Compatibility and Heat Transfer Performance of High Temperature and Ultra-High Temperature Heat Pipes
,”
J. Chem. Eng.
,
62
(
S1
), pp.
77
81
.
13.
Peng
,
W.
,
2011
, “
Theoretical and Simulation Research on Thermal Protection Mechanism of Metal Structure Heat Pipe of Hypersonic Vehicle
,”
Ph. D. dissertation
,
Harbin University of Technology
,
Harbin, Heilongjiang
. (In Chinese)
14.
Yu
,
L.
,
2012
, “
Study on the Application Mechanism of High Temperature Heat Pipe in Dredged Thermal Protection Structure
,”
Ph.D. dissertation
,
University of National Defense Science and Technology
,
Changsha, Hunan
. (In Chinese)
15.
Sun
,
J.
, and
Liu
,
W.
,
2013
, “
Integrated Modeling and Analysis of Heat Pipe Cooling Front Structure of Hypersonic Vehicle
,”
J. Phys.
,
62
(
7
), pp.
239
246
.
16.
Li
,
B.
, and
Liu
,
W.
,
2015
, “
Capillary Limit and Performance Analysis of High Temperature Heat Pipe Under Sudden Change of Velocity
,”
Shanghai Aerosp.
,
32
(
6
), pp.
58
61
. (In Chinese)
17.
Wang
,
H.
,
Qu
,
W.
, and
Huai
,
X.
,
2015
, “
Thermal Protection of Hypersonic Wing Leading Edge Based on Cavity Heat Pipe
,”
J. Eng. Thermophys.
,
36
(
10
), pp.
2267
2270
. (In Chinese)
18.
Deng
,
D.
,
Chen
,
S.
,
Ai
,
B.
,
Qu
,
W.
, and
Yu
,
J.
,
2016
, “
Calculation Investigation of High-Temperature Heat Pipe Startup of Sharp Leading Edge
,”
ACTA Aerodyn. Sin.
,
34
(
5
), pp.
646
651
. (In Chinese)
19.
Li
,
J.
,
Xu
,
B.
,
Lu
,
N.
,
Wang
,
C.
, and
Singh
,
R.
,
2022
, “
Thermal Characterization of Potassium Heat Pipe Using High-Temperature Calorimetry Method Based on Evaporative Weighing
,”
Heat Transfer Eng.
20.
Reay
,
D. A.
, and
Kew
,
P. A.
,
2006
,
Heat Pipes: Theory, Design, and Applications
, 5th ed.,
Butterworth-Heinemann
,
Oxford
.
21.
Zhao
,
J.
,
Yuan
,
D.
,
Tang
,
D.
,
Cao
,
K.
, and
Ji
,
Y.
,
2021
, “
Experimental Study and Theoretical Analysis of Sonic Limit of High Temperature Heat Pipe
,”
J. Eng. Thermophys.
,
42
(
3
), pp.
700
705
. (In Chinese)
22.
Busse
,
C.
,
1973
, “
Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipes
,”
Int. J. Heat Mass Transfer
,
16
(
1
), pp.
169
186
.
23.
Lu
,
N.
,
Li
,
J.
, and
Liu
,
F.
,
2022
, “
Experimental Study on Gradient Pore Size Capillary Wicks
,”
Heat Transfer Res.
,
53
(
7
), pp.
57
75
.
24.
Lu
,
N.
,
Li
,
J.
, and
Sun
,
Y.
,
2022
, “
Research Progress and Prospect of Heat Pipe Capillary Wicks
,”
Front. Heat Mass Transfer
,
18
, p.
24
.
25.
Sun
,
X.
,
2020
, “
Research on Aerodynamic Thermal Prediction and Thermal Protection Material/ Structure Response of Hypersonic
,”
Ph.D. dissertation
,
Beijing University of science and technology
,
Beijing
. (In Chinese)
26.
Matthew
,
J. R.
, and
Scott
,
M.
,
2020
, “
Thompson. Experimental Investigation of a Flat-Plate Oscillating Heat Pipe With Groove-Enhanced Minichannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
6
), p.
061008
.
27.
Mangini
,
D.
,
Marengo
,
M.
,
Araneo
,
L.
,
Mameli
,
M.
,
Fioriti
,
D.
, and
Filippeschi
,
S.
,
2018
, “
Infrared Analysis of the Two Phase Flow in a Single Closed Loop Pulsating Heat Pipe
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
304
312
.
28.
Ding
,
T.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Z.
,
2018
, “
Visualization Experiment on Boiling Heat Transfer and Flow Characteristics in Separated Heat Pipe System
,”
Exp. Therm. Fluid. Sci.
,
91
, pp.
423
431
.
29.
Abraham
,
S.
,
Takawale
,
A.
,
Stephan
,
P.
, and
Pattamatta
,
A.
,
2021
, “
Thermal Characteristics of a Three-Dimensional Coil Type Pulsating Heat Pipe at Different Heating Modes
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041011
.
30.
Nazarimanesh
,
M.
,
Yousefi
,
T.
, and
Ashjaee
,
M.
,
2015
, “
Experimental Study on the Effects of Inclination Situation of the Sintered Heat Pipe on Its Thermal Performance
,”
Exp. Therm. Fluid. Sci.
,
68
, pp.
625
633
.
You do not currently have access to this content.