Abstract

The battery thermal management system (BTMS) is essential for lithium-ion batteries. At high application loads, excessive heat generation reduces the battery performance drastically and is also dangerous if the temperature of the battery is not maintained under limits. The heat pipe is a heat exchanger device with very high thermal conductivity. The present study was an attempt to find the effectiveness of the heat pipe attached to the battery under air cooling to reduce the temperature of the battery. The heat pipe can be flattened and bent hence it is very useful to extract heat from one place to another at a larger distance. In this paper, various arrangements of heat pipes with the lithium-titanate prismatic battery were considered with different wick porosity (0.45–0.7) as well as air velocity (3–8 m/s) and have discussed its effect on the temperature distribution of the battery. The present study about heat-pipe-assisted air cooling showed that out of six different configurations, four heat pipes with wick porosity 0.7, attached at the middle of two large surfaces of the lithium-titanate oxide (LTO) battery can reduce the maximum temperature below 40 °C and differential temperature below 5 °C of a single prismatic battery with airflow at 3 m/s when it was getting discharged at 8 C rating for 446 s.

References

1.
Deng
,
Y.
,
Feng
,
C.
,
Jiaqiang
,
E.
,
Zhu
,
H.
,
Chen
,
J.
,
Wen
,
M.
, and
Yin
,
H.
,
2018
, “
Effects of Different Coolants and Cooling Strategies on the Cooling Performance of the Power Lithium Ion Battery System: A Review
,”
Appl. Therm. Eng.
,
142
, pp.
10
29
.
2.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
, and
Fraser
,
R.
,
2015
, “
Experimental Temperature Distributions in a Prismatic Lithium-Ion Battery at Varying Conditions
,”
Int. Commun. Heat Mass Transfer
,
71
, pp.
35
43
.
3.
Behi
,
H.
,
Karimi
,
D.
,
Behi
,
M.
,
Jaguemont
,
J.
,
Ghanbarpour
,
M.
,
Behnia
,
M.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2020
, “
Thermal Management Analysis Using Heat Pipe in the High Current Discharging of Lithium-Ion Battery in Electric Vehicles
,”
J. Energy Storage
,
32
, pp.
60
68
.
4.
Behi
,
H.
,
Karimi
,
D.
,
Behi
,
M.
,
Jaguemont
,
J.
,
Ghanbarpour
,
M.
,
Behnia
,
M.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2020
, “
Heat Pipe Air-Cooled Thermal Management System for Lithium-Ion Batteries: High Power Applications
,”
Appl. Therm. Eng.
,
183
, pp.
1
13
.
5.
Behi
,
H.
,
Karimi
,
D.
,
Behi
,
M.
,
Ghanbarpour
,
M.
,
Jaguemont
,
J.
,
Sokkeh
,
M. A.
,
Gandoman
,
F. H.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2020
, “
A New Concept of Thermal Management System in Li-Ion Battery Using Air Cooling and Heat Pipe for Electric Vehicles
,”
Appl. Therm. Eng.
,
174
, pp.
1
15
.
6.
Zhao
,
R.
,
Gu
,
J.
, and
Liu
,
J.
,
2015
, “
An Experimental Study of Heat Pipe Thermal Management System With Wet Cooling Method for Lithium Ion Batteries
,”
J. Power Sources
,
273
, pp.
1089
1097
.
7.
Wang
,
Q.
,
Jiang
,
B.
,
Xue
,
Q. F.
,
Sun
,
H. L.
,
Li
,
B.
,
Zou
,
H. M.
, and
Yan
,
Y. Y.
,
2015
, “
Experimental Investigation on EV Battery Cooling and Heating by Heat Pipes
,”
Appl. Therm. Eng.
,
88
, pp.
54
60
.
8.
Liang
,
J.
,
Gan
,
Y.
, and
Li
,
Y.
,
2018
, “
Investigation on the Thermal Performance of a Battery Thermal Management System Using Heat Pipe Under Different Ambient Temperatures
,”
Energy Convers. Manage.
,
155
, pp.
1283
1288
.
9.
Liang
,
J.
,
Gan
,
Y.
,
Li
,
Y.
,
Tan
,
M.
, and
Wang
,
J.
,
2019
, “
Thermal and Electrochemical Performance of a Serially Connected Battery Module Using a Heat Pipe-Based Thermal Management System Under Different Coolant Temperatures
,”
Energy
,
189
.
10.
Kumar
,
V.
,
Gangacharyulu
,
D.
, and
Tathgir
,
R. G.
,
2007
, “
Heat Transfer Studies of a Heat Pipe
,”
Heat Transfer Eng.
,
28
(
11
), pp.
954
965
.
11.
Loh
,
C. K.
,
Harris
,
E.
, and
Chou
,
D. J.
,
2006
, “
Comparative Study of Heat Pipes Performances in Different Orientations
,”
Semiconductor Thermal Measurement and Management IEEE Twenty-First Annual IEEE Symposium
,
San Jose, CA
,
Mar. 19–23
, pp.
191
195
.
12.
Wan
,
C.
,
2019
, “
A Numerical Investigation of the Thermal Performances of an Array of Heat Pipes for Battery Thermal Management
,”
Fluid Dyn. Mater. Process.
,
15
(
4
), pp.
343
356
.
13.
Lin
,
K. T.
, and
Wong
,
S. C.
,
2013
, “
Performance Degradation of Flattened Heat Pipes
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
46
54
.
14.
Kumaresan
,
G.
,
Vijayakumar
,
P.
,
Ravikumar
,
M.
,
Kamatchi
,
R.
, and
Selvakumar
,
P.
,
2019
, “
Experimental Study on Effect of Wick Structures on Thermal Performance Enhancement of Cylindrical Heat Pipes
,”
J. Therm. Anal. Calorim.
,
136
(
1
), pp.
389
400
.
15.
Dan
,
D.
,
Yao
,
C.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Zeng
,
Z.
, and
Xu
,
X.
,
2019
, “
Dynamic Thermal Behavior of Micro Heat Pipe Array-Air Cooling Battery Thermal Management System Based on Thermal Network Model
,”
Appl. Therm. Eng.
,
162
, pp.
114
124
.
16.
Nemec
,
P.
,
Čaja
,
A.
, and
Malcho
,
M.
,
2013
, “
Mathematical Model for Heat Transfer Limitations of Heat Pipe
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
126
136
.
17.
Solomon
,
A. B.
,
Sekar
,
M.
, and
Yang
,
S. H.
,
2016
, “
Analytical Expression for Thermal Conductivity of Heat Pipe
,”
Appl. Therm. Eng.
,
100
, pp.
462
467
.
18.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
,
2008
, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe With a Grooved Wick
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4637
4650
.
You do not currently have access to this content.