Abstract

An attempt has been made to study the natural convection around a hollow vertical cylinder numerically which is suspended in motionless power-law fluids in the laminar range. The influence of various non-dimensional pertinent parameters, such as Grashof number (10 ≤ Gr ≤ 105), Prandtl number (0.71 ≤ Pr ≤ 100), and power-law index (0.2 ≤ n ≤ 1.8) on thermofluid characteristics around the hollow cylinder, is predicted computationally. Simulations are performed by varying the cylindrical aspect ratio (L/D) over the range of 1 ≤ L/D ≤ 20. It is reported that the average Nusselt number appreciably grows with the rise of Gr or/and Pr for a constant L/D. Moreover, the rate of rising of Nusselt number (Nu) with Gr or/and Pr strongly depends upon the power-law index (n); i.e., Nu finds a stronger dependence on Gr than that of Pr with a lower value of n (shear-thinning fluids, (n < 1)) and a completely different pattern has been noticed in shear-thickening fluids (n > 1). Furthermore, the average Nu on the outer wall (Nuouter) grows approximately in a linear way with an increase in aspect ratio for a particular Gr, Pr, and n. In contrast, Nuinner drops drastically and almost attains the asymptotic trend at a greater value of aspect ratio for lower Gr or/and Pr. The decreasing pattern of Nuinner is found to be remarkably steep for n < 1 (shear-thinning fluids) in comparison to n > 1 (shear-thickening fluids). Correlations are developed for Nuouter and Nuinner in terms of Gr, Pr, n, and L/D, which operate extremely well within ± 6% of the computational data.

References

1.
Ghani
,
A. A.
,
Farid
,
M. M.
,
Chen
,
X. D.
, and
Richards
,
P.
,
1999
, “
Numerical Simulation of Natural Convection Heating of Canned Food by Computational Fluid Dynamics
,”
J. Food Eng.
,
41
(
1
), pp.
55
64
.
2.
Kumar
,
A.
,
Bhattacharya
,
M.
, and
Blaylock
,
J.
,
1990
, “
Numerical Simulation of Natural Convection Heating of Canned Thick Viscous Liquid Food Products
,”
J. Food Sci.
,
55
(
5
), pp.
1403
1411
.
3.
Kastillo
,
J. P.
,
Martínez-Gómez
,
J.
,
Villacis
,
S. P.
, and
Riofrio
,
A. J.
,
2017
, “
Thermal Natural Convection Analysis of Olive Oil in Different Cookware Materials for Induction Stoves
,”
Int. J. Food Eng.
,
13
(
3
), pp.
1
15
.
4.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2022
, “
Thermo-Fluid Characteristics of an IRS System With Louvered Cylindrical Diathermic Funnels Considering Surface Radiation: A Three-Dimensional Numerical Exercise
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106132
.
5.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.
6.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Heat Transfer and Fluid Flow Around a Thick Hollow Vertical Cylinder Suspended in Air: A Numerical Approach
,”
Int. J. Therm. Sci.
,
152
, p.
106312
.
7.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2021
, “
A Comparative Numerical Study on Conjugate Natural Convection From Vertical Hollow Cylinder With Finite Thickness Placed on Ground and in Air
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021026
.
8.
Acharya
,
S.
,
Agrawal
,
S.
, and
Dash
,
S. K.
,
2018
, “
Numerical Analysis of Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
5
), p.
052501
.
9.
Acharya
,
S.
, and
Dash
,
S. K.
,
2020
, “
Turbulent Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air: A Numerical Approach
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100449
.
10.
Lian
,
W.
, and
Han
,
T.
,
2019
, “
Flow and Heat Transfer in a Rotating Heat Pipe With a Conical Condenser
,”
Int. Commun. Heat Mass Transfer
,
101
, pp.
70
75
.
11.
Rana
,
B. K.
,
Singh
,
B.
, and
Senapati
,
J. R.
,
2021
, “
Thermofluid Characteristics on Natural and Mixed Convection Heat Transfer From a Vertical Rotating Hollow Cylinder Immersed in Air: A Numerical Exercise
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
2
), p.
022601
.
12.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
.
13.
Berk
,
Z.
,
2008
,
Food Process Engineering and Technology
,
Academic Press
,
New York
.
14.
Chanes
,
J. W.
, and
Velez-Ruiz
,
J. F.
,
2003
,
Transport Phenomena in Food Processing
,
CRC Press
,
Boca Raton, FL
.
15.
Ng
,
M. L.
, and
Hartnett
,
J. P.
,
1988
, “
Free Convection Heat Transfer From Horizontal Wires to Pseudoplastic Fluids
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
441
447
.
16.
Sairamu
,
M.
,
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2013
, “
Natural Convection From a Circular Cylinder in Confined Bingham Plastic Fluids
,”
Int. J. Heat Mass Transfer
,
60
, pp.
567
581
.
17.
Soares
,
A. A.
,
Ferreira
,
J. M.
, and
Chhabra
,
R. P.
,
2005
, “
Flow and Forced Convection Heat Transfer in Crossflow of Non-Newtonian Fluids Over a Circular Cylinder
,”
Ind. Eng. Chem. Res.
,
44
, pp.
5815
5827
.
18.
Heckel
,
J. J.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1989
, “
Mixed Convection Along Slender Vertical Cylinders With Variable Surface Temperature
,”
Int. J. Heat Mass Transfer
,
32
(
8
), pp.
1431
1442
.
19.
Wang
,
T. Y.
, and
Kleinstreuer
,
C.
,
1989
, “
General Analysis of Steady Laminar Mixed Convection Heat Transfer on Vertical Slender Cylinders
,”
J. Heat Transfer
,
111
(
2
), pp.
393
398
.
20.
Wang
,
P.
,
Kahawita
,
R.
, and
Nguyen
,
T. H.
,
1990
, “
Numerical Computation of the Natural Convection Flow About a Horizontal Cylinder Using Splines
,”
Numer. Heat Transfer A: Appl.
,
17
, pp.
191
215
.
21.
Kang
,
G. U.
, and
Chung
,
B. J.
,
2010
, “
The Experimental Study on Transition Criteria of Natural Convection Inside a Vertical Pipe
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1057
1063
.
22.
Kang
,
G. U.
,
Chung
,
B. J.
, and
Kim
,
H. J.
,
2014
, “
Natural Convection Heat Transfer on a Vertical Cylinder Submerged in Fluids Having High Prandtl Number
,”
Int. J. Heat Mass Transfer
,
79
, pp.
4
11
.
23.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2021
, “
Entropy Generation Analysis and Cooling Time Estimation for a Rotating Vertical Hollow Tube in the Air Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
4
), p.
042101
.
24.
Rana
,
B. K.
,
2022
, “
Conjugate Steady Natural Convection Analysis Around Thick Tapered Vertical Pipe Suspended in the air
,”
Sādhanā
,
47
(
1
), pp.
1
16
.
25.
Rana
,
B. K.
,
2022
, “
Numerical Investigation on Free Convection From an Isothermally Heated Hollow Inclined Cylinder Suspended in Air
,”
Numer. Heat Transfer A: Appl.
, pp.
1
25
.
26.
Ghosh
,
U. K.
,
Upadhyay
,
S. N.
, and
Chhabra
,
R. P.
,
1994
, “
Heat and Mass Transfer From Immersed Bodies to Non-Newtonian Fluids
,”
Adv. Heat Transfer
,
25
, pp.
252
321
.
27.
Chhabra
,
R. P.
,
1999
, “Heat and Mass Transfer in Rheologically Complex Systems,”
Rheology series
, 8,
Elsevier
, pp.
1435
1488
.
28.
Jia
,
H.
, and
Gogos
,
G.
,
1996
, “
Laminar Natural Convection Heat Transfer From Isothermal Spheres
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1603
1615
.
29.
Chang
,
T. C. A.
,
Jeng
,
D. R.
, and
DeWitt
,
K. J.
,
1988
, “
Natural Convection to Power-Law Fluids From Two-Dimensional or Axisymmetric Bodies of Arbitrary Contour
,”
Int. J. Heat Mass Transfer
,
31
(
3
), pp.
615
624
.
30.
Acrivos
,
A.
,
1960
, “
A Theoretical Analysis of Laminar Natural Convection Heat Transfer to Non-Newtonian Fluids
,”
AIChE J.
,
6
(
4
), pp.
584
590
.
31.
Ng
,
M. L.
, and
Hartnett
,
J. P.
,
1986
, “
Natural Convection in Power-Law Fluids
,”
Int. Commun. Heat Mass Transfer
,
13
(
1
), pp.
115
120
.
32.
Ng
,
M. L.
,
Harnett
,
J. P.
, and
Kwack
,
E. Y.
,
1986
, “
Natural Convection From Horizontal Wires to Viscoelastic Fluids
,”
J. Heat Transfer
,
108
(
4
), pp.
790
795
.
33.
Ng
,
M. L.
, and
Hartnett
,
J. P.
,
1988
, “
Free Convection Heat Transfer From Horizontal Wires to Pseudoplastic Fluids
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
441
447
.
34.
Soares
,
A. A.
,
Ferreira
,
J. M.
, and
Chhabra
,
R. P.
,
2005
, “
Flow and Forced Convection Heat Transfer in Crossflow of Non-Newtonian Fluids Over a Circular Cylinder
,”
Ind. Eng. Chem. Res.
,
44
(
15
), pp.
5815
5827
.
35.
Prhashanna
,
A.
, and
Chhabra
,
R. P.
,
2011
, “
Laminar Natural Convection From a Horizontal Cylinder in Power-Law Fluids
,”
Ind. Eng. Chem. Res.
,
50
(
4
), pp.
2424
2440
.
36.
Kim
,
H. W.
,
Jeng
,
D. R.
, and
DeWitt
,
K. J.
,
1983
, “
Momentum and Heat Transfer in Power-Law Fluid Flow Over Two-Dimensional or Axisymmetrical Bodies
,”
Int. J. Heat Mass Transfer
,
26
(
2
), pp.
245
259
.
37.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Steady Forced Convection Heat Transfer From a Heated Circular Cylinder to Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
977
990
.
38.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Effect of Blockage on Heat Transfer From a Cylinder to Power Law Liquids
,”
Chem. Eng. Sci.
,
62
(
17
), pp.
4729
4741
.
39.
Srinivas
,
A. T.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2009
, “
Mixed Convection Heat Transfer From a Cylinder in Power-Law Fluids: Effect of Aiding Buoyancy
,”
Ind. Eng. Chem. Res.
,
48
(
21
), pp.
9735
9754
.
40.
Patnana
,
V. K.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2010
, “
Two-Dimensional Unsteady Forced Convection Heat Transfer in Power-Law Fluids From a Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4152
4167
.
41.
Soares
,
A. A.
,
Anacleto
,
J.
,
Caramelo
,
L.
,
Ferreira
,
J. M.
, and
Chhabra
,
R. P.
,
2009
, “
Mixed Convection From a Circular Cylinder to Power Law Fluids
,”
Ind. Eng. Chem. Res.
,
48
(
17
), pp.
8219
8231
.
42.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2006
, “
Fluid Flow and Heat Transfer in Power-Law Fluids Across Circular Cylinders: Analytical Study
,”
J. Heat Transfer
,
128
(
9
), pp.
870
878
.
43.
Soares
,
A. A.
,
Ferreira
,
J. M.
,
Caramelo
,
L.
,
Anacleto
,
J.
, and
Chhabra
,
R. P.
,
2010
, “
Effect of Temperature-Dependent Viscosity on Forced Convection Heat Transfer From a Cylinder in Crossflow of Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4728
4740
.
44.
Torkfar
,
A.
,
Noori Rahim Abadi
,
S. M. A.
, and
Ahmadpour
,
A.
,
2020
, “
Natural Convection Heat Transfer of Non-Newtonian Power-Law Fluids Within an Array of Elliptic Cylinders
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011105
.
45.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
545
551
.
46.
Prhashanna
,
A.
, and
Chhabra
,
R. P.
,
2010
, “
Free Convection in Power-Law Fluids From a Heated Sphere,”
,”
Chem. Eng. Sci.
,
65
(
23
), pp.
6190
6205
.
47.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
48.
Sasmal
,
C.
, and
Chhabra
,
R. P.
,
2011
, “
Laminar Natural Convection From a Heated Square Cylinder Immersed in Power-Law Liquids
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
811
830
.
49.
Vakacharla
,
B. K.
, and
Rana
,
B. K.
,
2022
, “
Free Convection Heat Transfer From a Spherical Shaped Open Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
9
), p.
092601
.
50.
Churchill
,
S. W.
,
1977
, “
A Comprehensive Correlating Equation for Laminar, Assisting, Forced and Free Convection
,”
AIChE J.
,
23
(
1
), pp.
10
16
.
51.
McAdams
,
W. H.
,
1954
,
Heat Transmission
, 3rd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.