Abstract

The droplet phase transition process on the cold surface of a T300 carbon fiber substrate was studied by observing the droplet freezing process. Through the construction of visualized experimental device, the change in the droplet phase transition time under different experimental conditions, the progression of the solid–liquid interface during the phase transition process, the droplet deformation rate, and the ratio of growth of the interface height after the phase interface appears were experimentally obtained. The influence of different surface temperatures and different droplet volumes on the phase transition process was investigated. The experimental results show that the phase interface shows an irregular profile during the phase transition of the sessile droplet on the cold surface of the carbon fiber substrate; it presents a wave shape early and a smooth concave shape later. The influence of droplet volume on the phase transition time is not a proportional relationship. The height of the solid–liquid phase interface during the droplet phase transition process first grows rapidly, then slowly, and then fast once again. In other words, the growth rate of the phase interface is relatively fast when the phase transition has just occurred and then when the bulged tip is formed. At different cold surface temperatures, the droplet deformation rate with a volume of 10 µL on the carbon fiber substrate is basically the same, which is about 32.4%, within an uncertainty of about 1%, and it is higher than the contrast substrate. However, the influence of gravity factor is important in determining the droplet deformation rate for different droplet volumes.

References

1.
Zhang
,
X.
,
Liu
,
X.
,
Wu
,
X. M.
, and
Min
,
J. C.
,
2018
, “
Simulation and Experiment on Supercooled Sessile Water Droplet Freezing With Special Attention to Supercooling and Volume Expansion Effects
,”
Int. J. Heat Mass Transfer
,
127
(
A
), pp.
975
985
.
2.
Wang
,
Y.
, and
Wang
,
Z.
,
2018
, “
Sessile Droplet Freezing on Polished and Micro-micro-hierarchical Silicon Surfaces
,”
Appl. Therm. Eng.
,
137
, pp.
66
73
.
3.
Jin
,
Z. Y.
,
Cheng
,
X. Y.
, and
Yang
,
Z. G.
,
2017
, “
Experimental Investigation of the Successive Freezing Processes of Water Droplets on an Ice Surface
,”
Int. J. Heat Mass Transfer
,
107
, pp.
906
915
.
4.
Virk
,
M. S.
,
2016
, “
Atmospheric Icing of Transmission Line Circular Conductor Bundles in Triplex Configuration
,”
Proceedings of the IEEE International Conference on Power and Renewable Energy ICPRE 2016
,
Shanghai, China
,
Oct. 21–23
, pp.
24
28
.
5.
Huang
,
X. B.
,
Ouyang
,
L. S.
,
Wang
,
Y. N.
,
Li
,
L. C.
, and
Luo
,
B.
,
2011
, “
Analysis on Key Influence Factor of Transmission Line Icing
,”
High Voltage Eng.
,
37
(
7
), pp.
1677
1682
.
6.
Huang
,
X. B.
,
Gao
,
H.
,
Zhu
,
Y. C.
,
Cui
,
Y. T.
, and
Hu
,
X. W.
,
2018
, “
Convective Heat Transfer Characteristics of Transmission Lines on Rough Ice Surface
,”
High Voltage Eng.
,
44
(
11
), pp.
3509
3516
.
7.
Lee
,
S.
, and
Bragg
,
M. B.
,
1999
, “
Experimental Investigation of Simulated Large-Droplet Ice Shapes on Airfoil Aerodynamics
,”
J. Aircr.
,
36
(
5
), pp.
844
850
.
8.
Che
,
J.
,
Shao
,
Y. P.
, and
Ding
,
D.
,
2018
, “
Study of Longitudinal Flight Dynamics Characteristics of Large Aircraft at Wing Icing Condition
,”
Fligh Dyn.
,
36
(
03
), pp.
1
4
.
9.
Wei
,
Y.
,
Xu
,
H. J.
,
Xue
,
Y.
,
Li
,
Z.
, and
Zhang
,
J. X.
,
2019
, “
Influence of Ice Accretion on Leading Edge of Wings on Stability and Controllability of Large Aircraft
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
45
(
6
), pp.
1088
1095
.
10.
Tan
,
H. H.
,
Xu
,
G. H.
,
Tao
,
T. F.
,
Sun
,
X. Q.
, and
Yao
,
W. D.
,
2015
, “
Experimental Investigation on the Defrosting Performance of a Finned-Tube Evaporator Using Intermittent Ultrasonic Vibration
,”
Appl. Energy
,
158
, pp.
220
232
.
11.
Dehghani-Sanij
,
A. R.
,
MacLachlan
,
S.
,
Naterer
,
G. F.
,
Muzychka
,
Y. S.
,
Haynes
,
R. D.
, and
Enjilela
,
V.
,
2020
, “
Multistage Cooling and Freezing of a Saline Spherical Water Droplet
,”
Int. J. Therm. Sci.
,
147
, p.
106095
.
12.
Hindmarsh
,
J. P.
,
Russell
,
A. B.
, and
Chen
,
X. D.
,
2004
, “
Experimental and Numerical Analysis of the Temperature Transition of a Freezing Food Solution Droplet
,”
Chem. Eng. Sci.
,
59
(
12
), pp.
2503
2515
.
13.
Yue
,
X. F.
,
Liu
,
W. D.
, and
Wang
,
Y.
,
2019
, “
Freezing and Melting of Sessile Droplet on Micro and Hierarchically-Structured Silicon Surfaces
,”
Appl. Therm. Eng.
,
161
, p.
114185
.
14.
Yue
,
X. F.
,
Liu
,
W. D.
, and
Wang
,
Y.
,
2018
, “
Freezing Delay, Frost Accumulation and Droplets Condensation Properties of Micro- or Hierarchically-Structured Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
126
(
A
), pp.
442
451
.
15.
Sheng
,
W.
,
Pei
,
Y.
,
Li
,
X. L.
,
Ming
,
P. M.
, and
Zhao
,
W. L.
,
2020
, “
Effect of Surface Characteristics on Condensate Droplets Growth
,”
Appl. Therm. Eng.
,
173
, p.
115260
.
16.
Suzuki
,
S.
,
Nakajima
,
A.
,
Yoshida
,
N.
,
Sakai
,
M.
,
Hashimoto
,
A.
,
Kameshima
,
Y.
, and
Okada
,
K.
,
2007
, “
Freezing of Water Droplets on Silicon Surfaces Coated With Various Silanes
,”
Chem. Phys. Lett.
,
445
(
1–3
), pp.
37
41
.
17.
Zuo
,
Z. P.
,
Song
,
X. Y.
,
Liao
,
R. J.
,
Zhao
,
X. T.
, and
Yuan
,
Y.
,
2019
, “
Understanding the Anti-icing Property of Nanostructured Superhydrophobic Aluminum Surface During Glaze ice Accretion
,”
Int. J. Heat Mass Transfer
,
133
, pp.
119
128
.
18.
Truong
,
V.
,
2018
, “
Fully Resolved Simulations of Drop Solidification Under Forced Convection
,”
Int. J. Heat Mass Transfer
,
122
, pp.
252
263
.
19.
Huang
,
L. Y.
,
Liu
,
Z. L.
,
Liu
,
Y. M.
, and
Gou
,
Y. J.
,
2010
, “
Experimental Study of Droplet Frozen on Horizontal Copper Surface Under Low Ambient Temperature
,”
J. Eng. Thermophys.
,
31
(
4
), pp.
647
650
.
20.
Zhang
,
X.
,
Wu
,
X. M.
,
Min
,
J. C.
, and
Liu
,
X.
,
2017
, “
Modelling of Sessile Water Droplet Shape Evolution During Freezing With Consideration of Supercooling Effect
,”
Appl. Therm. Eng.
,
125
, pp.
644
651
.
21.
Zhang
,
H. F.
,
Zhao
,
Y. G.
,
Lv
,
R.
, and
Yang
,
C.
,
2016
, “
Freezing of Sessile Water Droplet for Various Contact Angles
,”
Int. J. Therm. Sci.
,
101
, pp.
59
67
.
22.
Zhang
,
H. F.
,
Teo
,
M. K.
, and
Yang
,
C.
,
2015
, “
Superhydrophobic Carbon Nanotube/Polydimethylsiloxane Composite Coatings
,”
Mater. Sci. Technol.
,
31
(
14
), pp.
1745
1748
.
23.
Fang
,
Z. D.
,
Xia
,
P.
,
Li
,
S. C.
, and
Chen
,
J. Y.
,
2019
, “
Experimental Study of Frozen Water Droplets on Aluminum Surface With Effects of Temperature and Humidity
,”
Light Ind. Mach.
,
37
(
3
), pp.
46
49
.
24.
Jung
,
S.
,
Tiwari
,
M. K.
,
Doan
,
N. V.
, and
Poulikakos
,
D.
,
2012
, “
Mechanism of Supercooled Droplet Freezing on Surfaces
,”
Nat. Commun.
,
3
(
1
), pp.
615
622
.
25.
Hao
,
P. F.
,
Lv
,
C. J.
, and
Zhang
,
X. W.
,
2014
, “
Freezing of Sessile Water Droplets on Surfaces With Various Roughness and Wettability
,”
Appl. Phys. Lett.
,
104
(
16
), p.
161609
.
26.
Mandal
,
D. K.
,
Criscione
,
A.
,
Tropea
,
C.
, and
Amirfazli
,
A.
,
2015
, “
Shedding of Water Drops From a Surface Under Icing Conditions
,”
Langmuir
,
31
(
34
), pp.
9340
9347
.
27.
Marín
,
A. G.
,
Enríquez
,
O. R.
,
Brunet
,
P.
,
Colinet
,
P.
, and
Snoeijer
,
J. H.
,
2014
, “
Universality of Tip Singularity Formation in Freezing Water Drops
,”
Phys. Rev. Lett.
,
113
(
5
), p.
054301
.
28.
Graeber
,
G.
,
Dolder
,
V.
,
Schutzius
,
T. M.
, and
Poulikakos
,
D.
,
2018
, “
Cascade Freezing of Supercooled Water Droplet Collectives
,”
ACS Nano
,
12
(
11
), pp.
11274
11281
.
29.
Li
,
Q.
,
2015
, “Discussion on the Application of Carbon Fiber Composite for Wind Turbine Blades,” Heilongjiang Science and Technology Information, (9), p.
91
.
30.
Sun
,
Y.
,
2019
, “
Application Analysis of Carbon Fiber in Automotive Lightweight
,”
Adhes.
,
12
, pp.
104
106
.
31.
Liu
,
D. Q.
,
Cheng
,
J. X.
,
Zhang
,
Z. D.
,
Ma
,
C. C.
, and
Li
,
Q. H.
,
2019
, “
Manufacture of Carbon Fiber Composite Car Shell and Integrated Car Body
,”
Mech. Eng. Auto.
, (
6
), pp.
200
201
.
32.
Ming
,
Y. K.
,
Duan
,
Y. G.
,
Zhang
,
S. Q.
,
Zhu
,
Y. S.
, and
Wang
,
B.
,
2020
, “
Self-heating 3D Printed Continuous Carbon Fiber/Epoxy Mesh and Its Application in Wind Turbine Deicing
,”
Polym. Test.
,
82
, p.
106309
.
33.
Qian
,
B. Z.
,
2017
, “
Development Trend of Carbon Fiber Composite Wind Turbine Blades
,”
Synth. Fiber China
,
46
(
5
), pp.
54
55
.
34.
Hindmarsh
,
J. P.
,
Russell
,
A. B.
, and
Chen
,
X. D.
,
2003
, “
Experimental and Numerical Analysis of the Temperature Transition of a Suspended Freezing Water Droplet
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1199
1213
.
35.
Chaudhary
,
G.
, and
Li
,
R.
,
2014
, “
Freezing of Water Droplets on Solid Surfaces: An Experimental and Numerical Study
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
86
93
.
36.
Hou
,
J. Q.
,
Gong
,
J. Y.
, and
Li
,
Z.
,
2019
, “
Experimental Study of Droplet on Copper Surface
,”
J. Xi'an Jiaotong Univ.
,
53
(
5
), pp.
30
36
.
37.
Zhang
,
X.
,
Liu
,
X.
,
Min
,
J. C.
, and
Wu
,
X. M.
,
2019
, “
Shape Variation and Unique Tip Formation of a Sessile Water Droplet During Freezing
,”
Appl. Therm. Eng.
,
147
, pp.
927
934
.
38.
Schremb
,
M.
, and
Tropea
,
C.
,
2016
, “
Solidification of Supercooled Water in the Vicinity of a Solid Wall
,”
Phys. Rev. E
,
94
(
5
), p.
052804
.
39.
Tavakoli
,
F.
,
Davis
,
S. H.
, and
Kavehpour
,
H. P.
,
2015
, “
Freezing of Supercooled Water Drops on Cold Solid Substrates Initiation and Mechanism
,”
J. Coat. Technol. Res.
,
12
(
5
), pp.
869
875
.
40.
Gong
,
J.
,
Hou
,
J.
,
Yang
,
L.
,
Wu
,
W.
,
Li
,
G.
, and
Gao
,
T.
,
2019
, “
Mesoscopic Investigation of Frost Crystal Nucleation on Cold Surface Based on the Lattice-Boltzmann Method
,”
J. Mech. Sci. Technol.
,
33
(
4
), pp.
1925
1935
.
41.
Zhao
,
T.
, and
Jiang
,
L.
,
2018
, “
Contact Angle Measurement of Natural Materials
,”
Colloids Surf., B
,
161
, pp.
324
330
.
You do not currently have access to this content.