Abstract

Considering the issues of environmental pollution and energy efficiency, heat pumps are gradually replacing traditional coal combustion for heating at low ambient temperatures. In this paper, eco-friendly CO2/HCs with large temperature glides are applied in a single-stage recuperative heat pump water heater. Its heating performance is theoretically investigated under the working condition of producing circulating hot water in typical winter of northern China, with medium temperature difference between supply/return water and large temperature difference between air inlet and water inlet. Due to its simple structure, low initial investment and high efficiency, its potential for producing circulating hot water is demonstrated. Exergy analyses are conducted to reveal the significant influence of the exergy losses of heat exchanger on system performance. For specified CO2/HC, optimal COP is obtained through global optimization of cycle pressures and mixture concentration. The heating performances of different CO2/HCs are compared, among which CO2/R600 and CO2/R600a behave better. Meanwhile, a typical vapor-injection cycle is used to demonstrate priorities on the heating performance of this recuperative cycle, in which the COP of recuperative cycle using CO2/R600 is more than 3.4% higher than that of the vapor-injection cycle. The results obtained in this paper provide a simple and efficient solution for producing circulating hot water at low ambient temperatures.

References

1.
GB 50736-2012
,
2012
,
Design Code for Heating Ventilation and Air Conditioning of Civil Buildings
,
China Architecture and Building Press
,
Beijing
.
2.
Zhang
,
L.
,
Jiang
,
Y.
,
Dong
,
J.
, and
Yao
,
Y.
,
2018
, “
Advances in Vapor Compression Air Source Heat Pump System in Cold Regions: A Review
,”
Renew. Sust. Energ Rev.
,
81
, pp.
353
365
.
3.
Arpagaus
,
C.
,
Bless
,
F.
, and
Schiffmann
,
J.
,
2016
, “
Multi-Temperature Heat Pumps: A Literature Review
,”
Int. J. Refrig.
,
69
, pp.
437
465
.
4.
Xu
,
X.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2011
, “
Refrigerant Injection for Heat Pumping/Air Conditioning Systems: Literature Review and Challenges Discussions
,”
Int. J. Refrig.
,
34
(
2
), pp.
402
415
.
5.
Tello-Oquendo
,
F. M.
,
Navarro-Peris
,
M.
, and
Gonzálvez-Maciá
,
J.
,
2019
, “
Comparison of the Performance of a Vapor-Injection Scroll Compressor and a Two-Stage Scroll Compressor Working With High Pressure Ratios
,”
Appl. Therm. Eng.
,
160
, p.
114023
.
6.
Guo
,
H.
,
Gong
,
M.
, and
Qin
,
X.
,
2019
, “
Performance Analysis of a Modified Subcritical Zeotropic Mixture Recuperative High-Temperature Heat Pump
,”
Appl. Energy
,
237
, pp.
338
352
.
7.
Sun
,
S.
,
Guo
,
H.
, and
Gong
,
M.
,
2019
, “
Thermodynamic Analysis of Single-Stage Compression Air-Source Heat Pumps With Different Recuperation Ways for Large Temperature Lift
,”
Int. J. Refrig.
,
108
, pp.
91
102
.
8.
Brodal
,
E.
, and
Eiksund
,
O.
,
2020
, “
Optimization Study of Heat Pumps Using Refrigerant Blends—Ejector Versus Expansion Valve Systems
,”
Int. J. Refrig.
,
111
, pp.
136
146
.
9.
Hakkaki-Fard
,
A.
,
Aidoun
,
Z.
, and
Ouzzane
,
M.
,
2015
, “
Improving Cold Climate Air-Source Heat Pump Performance With Refrigerant Mixtures
,”
Appl. Therm. Eng.
,
78
, pp.
695
703
.
10.
Zhao
,
L.
,
Zheng
,
N.
, and
Deng
,
S.
,
2014
, “
A Thermodynamic Analysis of an Auto-Cascade Heat Pump Cycle for Heating Application in Cold Regions
,”
Energy Build.
,
82
, pp.
621
631
.
11.
Abas
,
N.
,
Kalair
,
A. R.
,
Khan
,
N.
,
Haider
,
A.
,
Saleem
,
Z.
, and
Saleem
,
M. S.
,
2018
, “
Natural and Synthetic Refrigerants, Global Warming: A Review
,”
Renew. Sust. Energy Rev.
,
90
, pp.
557
569
.
12.
Heredia-Aricapa
,
Y.
,
Belman-Fores
,
J. M.
,
Mota-Babiloni
,
A.
,
Serrano-Arellano
,
J.
, and
García-Pabón
,
J. J.
,
2020
, “
Overview of Low GWP Mixtures for the Replacement of HFC Refrigerants: R134a, R404A and R410A
,”
Int. J. Refrig.
,
111
, pp.
113
123
.
13.
Nawaz
,
K.
,
Shen
,
B.
,
Elatar
,
A.
,
Baxter
,
V.
, and
Abdelaziz
,
O.
,
2018
, “
Performance Optimization of CO2 Heat Pump Water Heater
,”
Int. J. Refrig.
,
85
, pp.
213
228
.
14.
Wang
,
D.
,
Yu
,
B.
,
Hu
,
J.
,
Chen
,
L.
,
Shi
,
J.
, and
Chen
,
J.
,
2018
, “
Heating Performance Characteristics of CO2 Heat Pump System for Electrical Vehicle in a Cold Climate
,”
Int. J. Refrig.
,
85
, pp.
27
41
.
15.
Granryd
,
E.
,
2001
, “
Hydrocarbons as Refrigerants—An Overview
,”
Int. J. Refrig.
,
24
(
1
), pp.
15
24
.
16.
Harby
,
K.
,
2017
, “
Hydrocarbons and Their Mixtures as Alternatives to Environmental Unfriendly Halogenated Refrigerants: An Updated Overview
,”
Renew. Sust. Energy Rev.
,
73
, pp.
1247
1264
.
17.
Bamigbetan
,
O.
,
Eikevik
,
T. M.
,
Nekså
,
P.
, and
Bantle
,
M.
,
2017
, “
Review of Vapour Compression Heat Pumps for High Temperature Heating Using Natural Working Fluids
,”
Int. J. Refrig.
,
80
, pp.
197
211
.
18.
Zhang
,
X.
,
Wang
,
F.
,
Fan
,
X.
,
Duan
,
H.
, and
Zhu
,
F.
,
2017
, “
An Investigation of Heat Pump System Using CO2/Propane Mixture as a Working Fluid
,”
Int. J. Green Energy
,
14
(
1
), pp.
105
111
.
19.
Feng
,
L.
,
Zheng
,
D.
,
Chen
,
J.
,
Dai
,
X.
, and
Shi
,
L.
,
2017
, “
Exploration and Analysis of CO2 + Hydrocarbons Mixtures as Working Fluids for Trans-Critical ORC
,”
Energy Procedia
,
129
, pp.
145
151
.
20.
Nicola
,
G. D.
,
Polonara
,
F.
,
Stryjek
,
R.
, and
Arteconi
,
A.
,
2011
, “
Performance of Cascade Cycles Working With Blends of CO2 + Natural Refrigerants
,”
Int. J. Refrig.
,
34
(
6
), pp.
1436
1445
.
21.
Kim
,
J. H.
,
Cho
,
J. M.
, and
Kim
,
M. S.
,
2008
, “
Cooling Performance of Several CO2/Propane Mixtures and Glide Matching With Secondary Heat Transfer Fluid
,”
Int. J. Refrig.
,
31
(
5
), pp.
800
806
.
22.
Ju
,
F.
,
Fan
,
X.
,
Chen
,
Y.
,
Quyang
,
H.
,
Kuang
,
A.
,
Ma
,
S.
, and
Wang
,
F.
,
2018
, “
Experiment and Simulation Study on Performances of Heat Pump Water Heater Using Blend of R744/R290
,”
Energy Build.
,
169
, pp.
148
156
.
23.
Ju
,
F.
,
Fan
,
X.
,
Chen
,
Y.
,
Wang
,
T.
,
Tang
,
X.
,
Kuang
,
A.
, and
Ma
,
S.
,
2018
, “
Experimental Investigation on a Heat Pump Water Heater Using R744/R290 Mixture for Domestic Hot Water
,”
Int. J. Therm. Sci.
,
132
, pp.
1
13
.
24.
Dai
,
B.
,
Dang
,
C.
,
Li
,
M.
,
Tian
,
H.
, and
Ma
,
Y.
,
2015
, “
Thermodynamic Performance Assessment of Carbon Dioxide Blends With Low-Global Warming Potential (GWP) Working Fluids for a Heat Pump Water Heater
,”
Int. J. Refrig.
,
56
, pp.
1
14
.
25.
Wang
,
D.
,
Liu
,
Y.
,
Kou
,
Z.
,
Yao
,
L.
,
Lu
,
Y.
,
Tao
,
L.
, and
Xia
,
P.
,
2019
, “
Energy and Exergy Analysis of an Air-Source Heat Pump Water Heater System Using CO2/R170 Mixture as an Azeotropy Refrigerant for Sustainable Development
,”
Int. J. Refrig.
,
106
, pp.
628
638
.
26.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Assessment of Blends of CO2 With Butane and Isobutane as Working Fluids for Heat Pump Applications
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1460
1465
.
27.
Brown
,
J. S.
,
Yana-Motta
,
S. F.
, and
Domanski
,
P. A.
,
2002
, “
Comparative Analysis of an Automotive Air Conditioning Systems Operating With CO2 and R134a
,”
Int. J. Refrig.
,
25
(
1
), pp.
19
32
.
28.
Zühlsdorf
,
B.
,
Jensen
,
J. K.
, and
Elmegaard
,
B.
,
2019
, “
Heat Pump Working Fluid Selection—Economic and Thermodynamic Comparison of Criteria and Boundary Conditions
,”
Int. J. Refrig.
,
98
, pp.
500
513
.
29.
Wang
,
Q.
,
Cui
,
K.
,
Sun
,
T.
,
Chen
,
F.
, and
Chen
,
G.
,
2010
, “
Performance of a Single-Stage Linde-Hampson Refrigerator Operating With Binary Refrigerants at the Temperature Level of −60°C
,”
J. Zhejiang Univ., Sci., A
,
11
(
2
), pp.
115
127
.
30.
Dai
,
B.
,
Qi
,
H.
,
Liu
,
S.
,
Zhong
,
Z.
,
Li
,
H.
,
Song
,
M.
,
Ma
,
M.
, and
Sun
,
Z.
,
2019
, “
Environmental and Economical Analyses of Transcritical CO2 Heat Pump Combined With Direct Dedicated Mechanical Subcooling (DMS) for Space Heating in China
,”
Energy Convers. Manage.
,
198
, p.
111317
.
31.
Zühlsdorf
,
B.
,
Jensen
,
J. K.
,
Cignitti
,
S.
,
Madsen
,
C.
, and
Elmegaard
,
B.
,
2018
, “
Analysis of Temperature Glide Matching of Heat Pumps With Zeotropic Working Fluid Mixtures for Different Temperature Glides
,”
Energy
,
153
, pp.
650
660
.
32.
ASHRAE
,
2017
,
Fundamentals Handbook
,
American Society of Heating, Refrigerating and Air Conditioning Engineers
,
Atlanta, GA
.
33.
Rad
,
E. A.
, and
Maddah
,
S.
,
2019
, “
Entropic Optimization of the Economizer's Pressure in a Heat Pump Cycle Integrated With a Flash-Tank and Vapor-Injection System
,”
Int. J. Refrig.
,
97
, pp.
56
66
.
34.
Wang
,
W.
,
Li
,
Y.
, and
Cao
,
F.
,
2019
, “
Extremum Seeking Control for Efficient Operation of an Air-Source Heat Pump Water Heater With Internal Heat Exchanger Cycle Vapor Injection
,”
Int. J. Refrig.
,
99
, pp.
153
165
.
35.
Ma
,
G.
, and
Zhao
,
H.
,
2008
, “
Experimental Study of a Heat Pump System With Flash-Tank Coupled With Scroll Compressor
,”
Energy Build.
,
40
(
5
), pp.
697
701
.
36.
Cao
,
X.
,
Yang
,
W.
,
Zhou
,
F.
, and
He
,
Y.
,
2014
, “
Performance Analysis of Different High-Temperature Heat Pump Systems for Low-Grade Waste Heat Recovery
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
291
300
.
37.
Ma
,
Y.
,
Liu
,
Z.
, and
Tian
,
H.
,
2013
, “
A Review of Transcritical Carbon Dioxide Heat Pump and Refrigeration Cycles
,”
Energy
,
55
, pp.
156
172
.
38.
Cho
,
J. M.
,
Kim
,
Y. J.
, and
Kim
,
M. S.
,
2010
, “
Experimental Studies on the Characteristics of Evaporative Heat Transfer and Pressure Drop of CO2/Propane Mixtures in Horizontal and Vertical Smooth and Micro-Fin Tubes
,”
Int. J. Refrig.
,
33
(
1
), pp.
170
179
.
39.
Abadi
,
S. M. A. N. R.
,
Mehrabi
,
M.
, and
Meyer
,
J. P.
,
2018
, “
Prediction and Optimization of Condensation Heat Transfer Coefficients and Pressure Drops of R134a Inside an Inclined Smooth Tube
,”
Int. J. Heat Mass Transfer
,
235
, pp.
953
966
.
You do not currently have access to this content.