Abstract

Ice adhesion and accretion on power lines is a severe problem that can pose a threat to the electric power transmission, and this icing phenomenon is significantly related to the impact dynamics of freezing rain droplets. In the current paper, this impacting process was studied by using computational fluid dynamics, and the model was verified by an experiment with a high-speed camera. The detailed droplet impacting processes on the surface of a very commonly used overhead power line (the ACSR-type cable) were analyzed. The effects of surface wettability (θ = 67–135 deg) and initial droplet impact velocity (We = 22–219) on the evolution of the liquid–solid contact area during the whole process and the volume of the residual liquid on the power line surface after impact were studied. Meanwhile, the influence of the surface structure of the ACSR power line on the droplet impact dynamics was analyzed. Results show that the capturing of impacting droplets can be enhanced by the grooved structures on a hydrophilic ACSR power line surface, while differently the expelling of impacting droplets can be enhanced by these grooved structures on a hydrophobic ACSR power line surface. By analyzing the possible influence of the surface structure of an ACSR power line on the phase transition of impacting droplets, these grooved structures could facilitate the formation of ice nucleation which can finally make the ice adhesion and accretion on an ACSR power line is more serious than that on a traditional smooth cylindrical power line.

References

1.
Xie
,
Q.
, and
Sun
,
L.
,
2012
, “
Failure Mechanism and Retrofitting Strategy of Transmission Tower Structures Under Ice Load
,”
J. Constr. Steel Res.
,
74
, pp.
26
36
. 10.1016/j.jcsr.2012.02.003
2.
Kollár
,
L. E.
, and
Farzaneh
,
M.
,
2008
, “
Vibration of Bundled Conductors Following Ice Shedding
,”
IEEE Trans. Power Delivery
,
23
(
2
), pp.
1097
1104
. 10.1109/TPWRD.2007.915876
3.
Farzaneh
,
M.
,
2014
, “
Insulator Flashover Under Icing Conditions
,”
IEEE Trans. Dielectr. Electr. Insul.
,
21
(
5
), pp.
1997
2011
. 10.1109/TDEI.2014.004598
4.
Zerr
,
R. J.
,
1997
, “
Freezing Rain: An Observational and Theoretical Study
,”
J. Appl. Meteorol.
,
36
(
12
), pp.
1647
1661
. 10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2
5.
Yang
,
G.
,
Guo
,
K.
, and
Li
,
N.
,
2011
, “
Freezing Mechanism of Supercooled Water Droplet Impinging on Metal Surfaces
,”
Int. J. Refrig.
,
34
(
8
), pp.
2007
2017
. 10.1016/j.ijrefrig.2011.07.001
6.
Sun
,
M.
,
Kong
,
W.
,
Wang
,
F.
, and
Liu
,
H.
,
2019
, “
Impact Freezing Modes of Supercooled Droplets Determined by Both Nucleation and Icing Evolution
,”
Int. J. Heat Mass Transfer
,
142
, p.
118431
. 10.1016/j.ijheatmasstransfer.2019.07.081
7.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces
,”
AIChE J.
,
43
(
9
), pp.
2169
2179
. 10.1002/aic.690430903
8.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
. 10.1146/annurev.fluid.38.050304.092144
9.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
,
2002
, “
Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
,
33
(
1
), pp.
112
124
. 10.1007/s00348-002-0431-x
10.
Liu
,
Y.
,
Andrew
,
M.
,
Li
,
J.
,
Yeomans
,
J. M.
, and
Wang
,
Z.
,
2015
, “
Symmetry Breaking in Drop Bouncing on Curved Surfaces
,”
Nat. Commun.
,
6
(
1
), pp.
1
8
. 10.1038/ncomms10034
11.
Rajesh
,
R. S.
,
Naveen
,
P. T.
,
Krishnakumar
,
K.
, and
Kumar Ranjith
,
S.
,
2019
, “
Dynamics of Single Droplet Impact on Cylindrically-Curved Superheated Surfaces
,”
Exp. Therm. Fluid. Sci.
,
101
, pp.
251
262
. 10.1016/j.expthermflusci.2018.10.011
12.
Khurana
,
G.
,
Sahoo
,
N.
, and
Dhar
,
P.
,
2019
, “
Post-Collision Hydrodynamics of Droplets on Cylindrical Bodies of Variant Convexity and Wettability
,”
Phys. Fluids
,
31
(
2
), p.
022008
. 10.1063/1.5064799
13.
Mitra
,
S.
,
Sathe
,
M. J.
,
Doroodchi
,
E.
,
Utikar
,
R.
,
Shah
,
M. K.
,
Pareek
,
V.
,
Joshi
,
J. B.
, and
Evans
,
G. M.
,
2013
, “
Droplet Impact Dynamics on a Spherical Particle
,”
Chem. Eng. Sci.
,
100
, pp.
105
119
. 10.1016/j.ces.2013.01.037
14.
Banitabaei
,
S. A.
, and
Amirfazli
,
A.
,
2017
, “
Droplet Impact Onto a Solid Sphere: Effect of Wettability and Impact Velocity
,”
Phys. Fluids
,
29
(
6
), p.
062111
. 10.1063/1.4990088
15.
Liu
,
X.
,
Zhang
,
X.
, and
Min
,
J.
,
2019
, “
Maximum Spreading of Droplets Impacting Spherical Surfaces
,”
Phys. Fluids
,
31
(
9
), p.
092102
. 10.1063/1.5117278
16.
Guo
,
C.
,
Zhao
,
D.
,
Sun
,
Y.
,
Wang
,
M.
, and
Liu
,
Y.
,
2018
, “
Droplet Impact on Anisotropic Superhydrophobic Surfaces
,”
Langmuir
,
34
(
11
), pp.
3533
3540
. 10.1021/acs.langmuir.7b03752
17.
Lee
,
W.
, and
Son
,
G.
,
2011
, “
Numerical Study of Droplet Impact and Filling in a Microgroove
,”
Prog. Comput. Fluid Dyn.
,
11
(
3–4
), pp.
175
183
. 10.1504/PCFD.2011.041017
18.
Malla
,
L. K.
,
Patil
,
N. D.
,
Bhardwaj
,
R.
, and
Neild
,
A.
,
2017
, “
Droplet Bouncing and Breakup During Impact on a Microgrooved Surface
,”
Langmuir
,
33
(
38
), pp.
9620
9631
. 10.1021/acs.langmuir.7b02183
19.
Liang
,
G.
,
Guo
,
Y.
,
Yang
,
Y.
,
Guo
,
S.
, and
Shen
,
S.
,
2013
, “
Special Phenomena From a Single Liquid Drop Impact on Wetted Cylindrical Surfaces
,”
Exp. Therm. Fluid
,
51
, pp.
18
27
. 10.1016/j.expthermflusci.2013.06.012
20.
Blake
,
J.
,
Thompson
,
D.
,
Raps
,
D.
, and
Strobl
,
T.
,
2015
, “
Simulating the Freezing of Supercooled Water Droplets Impacting a Cooled Substrate
,”
AIAA J.
,
53
(
7
), pp.
1725
1739
. 10.2514/1.J053391
21.
Thrash
,
R.
,
Murrah
,
A.
,
Lancaster
,
M.
, and
Nuckles
,
K.
,
2007
, “
Southwire Company Overhead Conductor Manual
.”
22.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
23.
Osher
,
S. J.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating with Curvature Dependent Speed
,”
Comput. Phys.
,
79
(
1
), pp.
12
49
. 10.1016/0021-9991(88)90002-2
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
. 10.1016/0021-9991(92)90240-Y
25.
Hoffman
,
R.
,
1975
, “
A Study of the Advancing Interface. I. Interface Shape in Liquid—gas Systems
,”
J. Colloid Interface Sci.
,
50
(
2
), pp.
228
241
. 10.1016/0021-9797(75)90225-8
26.
Šikalo
,
Š
,
Wilhelm
,
H.
,
Roisman
,
I.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
062103
. 10.1063/1.1928828
27.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
, “
Bubbles, drops, and particles
.”
28.
Deng
,
L.
,
Wang
,
H.
,
Zhu
,
X.
,
Chen
,
R.
,
Ding
,
Y.
, and
Liao
,
Q.
,
2018
, “
Numerical Study of Water Droplets Impacting on Cylindrical Heat Transfer Pipes
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
598
610
. 10.1080/19942060.2018.1496142
29.
Oberli
,
L.
,
Caruso
,
D.
,
Hall
,
C.
,
Fabretto
,
M.
,
Murphy
,
P. J.
, and
Evans
,
D.
,
2014
, “
Condensation and Freezing of Droplets on Superhydrophobic Surfaces
,”
Adv. Colloid Interface Sci.
,
210
, pp.
47
57
. 10.1016/j.cis.2013.10.018
30.
Liu
,
X. Y.
,
2000
, “
Heterogeneous Nucleation or Homogeneous Nucleation?
112
(
22
), pp.
9949
9955
. 10.1063/1.481644
31.
Sear
,
R. P.
,
2014
, “
Quantitative Studies of Crystal Nucleation at Constant Supersaturation: Experimental Data and Models
,”
CrystEngComm
,
16
(
29
), pp.
6506
6522
. 10.1039/C4CE00344F
32.
Sear
,
R. P.
,
2007
, “
Nucleation at Contact Lines Where Fluid-Fluid Interfaces Meet Solid Surfaces
,”
J. Phys. Condens. Matter
,
19
(
46
), p.
466106
. 10.1088/0953-8984/19/46/466106
33.
Turnbull
,
D.
,
1950
, “
Kinetics of Heterogeneous Nucleation
,”
J. Chem. Phys.
,
18
(
2
), pp.
198
203
. 10.1063/1.1747588
34.
Bi
,
Y.
,
Cao
,
B.
, and
Li
,
T.
,
2017
, “
Enhanced Heterogeneous Ice Nucleation by Special Surface Geometry
,”
Nat. Commun.
,
8
(
1
), pp.
1
7
. 10.1038/ncomms15372
35.
Wang
,
F.
,
Lv
,
Y.
,
Zhang
,
Q.
,
You
,
Z.
, and
Li
,
C.
,
2010
, “
Ice Accretion on Different Aluminum Cable Steel Reinforced
,”
2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, CEIDP
,
West Lafayette, IN
,
Oct. 17–20
, pp.
1
4
. http://dx.doi.org/10.1109/CEIDP.2010.5723984
You do not currently have access to this content.