Abstract

A numerical model of a PV/microchannel direct-expansion evaporator for a CO2 heat pump is developed and validated with experimental data from the literature. The effects of degree of superheating, CO2 mass flux, and evaporation temperature on the amount of heat absorbed, pressure drop in the microchannel evaporator, PV temperature, and electrical efficiency are analyzed. The analysis shows that increasing the degree of superheating decreases the amount of heat absorbed, has minimal effect on the PV temperature (for superheating <15 °C), but reduces the pressure drop. The variation of CO2 mass flux has a minimal effect on the amount of heat absorbed and the PV temperature, but the pressure drop increases with increasing CO2 mass flux. Increasing the evaporation temperature decreases the amount of heat absorbed, reduces the pressure drop, and increases the PV temperature. For average ambient conditions for Fargo, North Dakota, a 5–10 °C of superheating at the evaporator outlet, an evaporator temperature between −5 and +5 °C, and a CO2 mass flux of 330–550 kg · m−2 · s−1 balance maximizing the heat absorption while minimizing the pressure drop. To maximize the PV efficiency, lower evaporation temperatures should be used. At an evaporation temperature of 0 °C and an insolation level of 1000 W · m−2, the CO2 microchannel evaporator causes a 23 °C reduction in PV panel temperature which corresponds to a 1.44% absolute increase in PV efficiency.

References

1.
EIA
,
2017
, “
EIA Electricity Data
,”
U.S. Dep. Energy
, (
September
), pp.
27
30
, https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_es1b, Accessed March 30, 2019.
2.
Solar Industry Research Data | SEIA
,” https://www.seia.org/solar-industry-research-data, Accessed March 30, 2019.
3.
Mohanraj
,
M.
,
Belyayev
,
Y.
,
Jayaraj
,
S.
, and
Kaltayev
,
A.
,
2018
, “
Research and Developments on Solar Assisted Compression Heat Pump Systems—A Comprehensive Review (Part A: Modeling and Modifications)
,”
Renew. Sustain. Energy Rev.
,
83
, pp.
90
123
. 10.1016/j.rser.2017.08.022
4.
Mohanraj
,
M.
,
Belyayev
,
Y.
,
Jayaraj
,
S.
, and
Kaltayev
,
A.
,
2018
, “
Research and Developments on Solar Assisted Compression Heat Pump Systems—A Comprehensive Review (Part B: Applications)
,”
Renew. Sustain. Energy Rev.
,
83
, pp.
124
155
. 10.1016/j.rser.2017.08.086
5.
James
,
A.
,
Mohanraj
,
M.
,
Srinivas
,
M.
, and
Jayaraj
,
S.
,
2020
, “
Thermal Analysis of Heat Pump Systems Using Photovoltaic-Thermal Collectors: A Review
,”
J. Therm. Anal. Calorim.
, pp.
1
39
. 10.1007/s10973-020-09431-2
6.
Dai
,
N.
,
Xu
,
X.
,
Li
,
S.
,
Zhang
,
Z.
,
Dai
,
N.
,
Xu
,
X.
,
Li
,
S.
, and
Zhang
,
Z.
,
2017
, “
Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System
,”
Appl. Sci.
,
7
(
2
), p.
197
. 10.3390/app7020197
7.
Kong
,
X.
,
Li
,
Y.
,
Lin
,
L.
, and
Yang
,
Y. G.
,
2017
, “
Modeling Evaluation of a Direct-Expansion Solar-Assisted Heat Pump Water Heater Using R410A
,”
Int. J. Refrig.
,
76
, pp.
136
146
. 10.1016/j.ijrefrig.2017.01.020
8.
Chow
,
T. T.
,
Fong
,
K. F.
,
Pei
,
G.
,
Ji
,
J.
, and
He
,
M.
,
2010
, “
Potential Use of Photovoltaic-Integrated Solar Heat Pump System in Hong Kong
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1066
1072
. 10.1016/j.applthermaleng.2010.01.013
9.
Ji
,
J.
,
Liu
,
K.
,
Tai
,
C. T.
,
Pei
,
G.
,
He
,
W.
, and
He
,
H.
,
2008
, “
Performance Analysis of a Photovoltaic Heat Pump
,”
Appl. Energy
,
85
(
8
), pp.
680
693
. 10.1016/j.apenergy.2008.01.003
10.
Zhao
,
X.
,
Zhang
,
X.
,
Riffat
,
S. B.
, and
Su
,
Y.
,
2011
, “
Theoretical Study of the Performance of a Novel PV/e Roof Module for Heat Pump Operation
,”
Energy Conver. Manage.
,
52
(
1
), pp.
603
614
.
11.
Chen
,
H.
,
Riffat
,
S. B.
, and
Fu
,
Y.
,
2011
, “
Experimental Study on a Hybrid Photovoltaic/Heat Pump System
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4132
4138
. 10.1016/j.applthermaleng.2011.08.027
12.
Ji
,
J.
,
Pei
,
G.
,
Tai
,
C. T.
,
Liu
,
K.
,
He
,
H.
,
Lu
,
J.
, and
Han
,
C.
,
2008
, “
Experimental Study of Photovoltaic Solar Assisted Heat Pump System
,”
Sol. Energy
,
82
(
1
), pp.
43
52
. 10.1016/j.solener.2007.04.006
13.
Xu
,
G.
,
Zhang
,
X.
, and
Deng
,
S.
,
2011
, “
Experimental Study on the Operating Characteristics of a Novel Low-Concentrating Solar Photovoltaic/Thermal Integrated Heat Pump Water Heating System
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3689
3695
. 10.1016/j.applthermaleng.2011.01.030
14.
Thome
,
J. R.
, and
Ribatski
,
G.
,
2005
, “
State-of-the-Art of Two-Phase Flow and Flow Boiling Heat Transfer and Pressure Drop of CO2 in Macro- and Micro-Channels
,”
Int. J. Refrig.
,
28
(
8
), pp.
1149
1168
. 10.1016/j.ijrefrig.2005.07.005
15.
Zhou
,
J.
,
Zhao
,
X.
,
Ma
,
X.
,
Qiu
,
Z.
,
Ji
,
J.
,
Du
,
Z.
, and
Yu
,
M.
,
2016
, “
Experimental Investigation of a Solar Driven Direct-Expansion Heat Pump System Employing the Novel PV/Micro-Channels-Evaporator Modules
,”
Appl. Energy
,
178
, pp.
484
495
. 10.1016/j.apenergy.2016.06.063
16.
Wang
,
D.
,
Yu
,
B.
,
Hu
,
J.
,
Chen
,
L.
,
Shi
,
J.
, and
Chen
,
J.
,
2017
, “
Heating Performance Characteristics of CO2 Heat Pump System for Electrical Vehicle in a Cold Climate
,”
Int. J. Refrig.
,
85
, pp.
27
41
. 10.1016/j.ijrefrig.2017.09.009
17.
Hang
,
Y.
,
Qu
,
M.
, and
Zhao
,
F.
,
2012
, “
Economic and Environmental Life Cycle Analysis of Solar Hot Water Systems in the United States
,”
Energy Build.
,
45
, pp.
181
188
. 10.1016/j.enbuild.2011.10.057
18.
Tamura
,
T.
,
Yakumaru
,
Y.
, and
Nishiwaki
,
F.
,
2005
, “
Experimental Study on Automotive Cooling and Heating Air Conditioning System Using CO2 as a Refrigerant
,”
Int. J. Refrig.
,
28
(
8
), pp.
1302
1307
. 10.1016/j.ijrefrig.2005.09.010
19.
Richter
,
M. R.
,
Song
,
S. M.
,
Yin
,
J. M.
,
Kim
,
M. H.
,
Bullard
,
C. W.
, and
Hrnjak
,
P. S.
,
2003
, “
Experimental Results of Transcritical CO2 Heat Pump for Residential Application
,”
Energy
,
28
(
10
), pp.
1005
1019
. 10.1016/S0360-5442(03)00065-3
20.
Yun
,
R.
,
Kim
,
Y.
, and
Park
,
C.
,
2007
, “
Numerical Analysis on a Microchannel Evaporator Designed for CO2 Air-Conditioning Systems
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1320
1326
. 10.1016/j.applthermaleng.2006.10.036
21.
Oh
,
J.
,
Pamitran
,
A. S.
,
Choi
,
K.
, and
Hrnjak
,
P.
,
2011
, “
International Journal of Heat and Mass Transfer Experimental Investigation on Two-Phase Flow Boiling Heat Transfer of Five Refrigerants in Horizontal Small Tubes of 0.5, 1.5 and 3.0 Mm Inner Diameters
,”
Int. J. Heat Mass Transf.
,
54
(
9–10
), pp.
2080
2088
. 10.1016/j.ijheatmasstransfer.2010.12.021
22.
Choi
,
K. I.
,
Pamitran
,
A. S.
, and
Oh
,
J. T.
,
2007
, “
Two-Phase Flow Heat Transfer of CO2 Vaporization in Smooth Horizontal Minichannels
,”
Int. J. Refrig.
,
30
(
5
), pp.
767
777
. 10.1016/j.ijrefrig.2006.12.006
23.
Rony
,
Rajib Uddin
, and
Sumathy
,
R.
,
2017
, “
Performance Optimization of a Direct-Expansion Solar-Assisted Heat Pump System Employing the PV/Oblique-Finned Micro-Channels Evaporator Modules
,”
ICRSE
,
Coimbatore, India
,
April
.
24.
Rony
,
R. U.
,
Yang
,
H.
,
Krishnan
,
S.
, and
Song
,
J.
,
2019
, “
Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review
,”
Energies
,
12
(
3
), p.
457
. 10.3390/en12030457
25.
Kim
,
M. H.
, and
Bullard
,
C. W.
,
2001
, “
Development of a Microchannel Evaporator Model for a CO2 Air-Conditioning System
,”
Energy
,
26
(
10
), pp.
931
948
. 10.1016/S0360-5442(01)00042-1
26.
Yurtsev
,
A.
, and
Jenkins
,
G. P.
,
2016
, “
Cost-Effectiveness Analysis of Alternative Water Heater Systems Operating With Unreliable Water Supplies
,”
Renew. Sustain. Energy Rev.
,
54
, pp.
174
183
. 10.1016/j.rser.2015.10.001
27.
Ji
,
J.
,
He
,
H.
,
Chow
,
T.
,
Pei
,
G.
,
He
,
W.
, and
Liu
,
K.
,
2009
, “
Distributed Dynamic Modeling and Experimental Study of PV Evaporator in a PV/T Solar-Assisted Heat Pump
,”
Int. J. Heat Mass Transf.
,
52
(
5–6
), pp.
1365
1373
. 10.1016/j.ijheatmasstransfer.2008.08.017
28.
Duffie
,
J. A.
,
Beckman
,
W. A.
, and
McGowan
,
J.
,
1985
, “
Solar Engineering of Thermal Processes
,”
Am. J. Phys.
,
53
(
4
), pp.
382
382
. 10.1119/1.14178
29.
Islam
,
M. R.
, and
Sumathy
,
K.
,
2013
, “
Carbon Dioxide Driven Solar-Assisted Heat Pump Water Heating System: A Theoretical Analysis
,”
Int. Res. J. Environ. Sci.
,
2
(
10
), pp.
77
92
.
30.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part II: Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
597
611
. 10.1016/j.expthermflusci.2010.11.014
31.
Premoli
,
A.
,
F. D.
, and
Prima
,
A.
,
1970
, “
An Empirical Correlation for Evaluating Two-Phase Mixture Density under Adiabatic Conditions
,”
European Two-Phase Flow Group Meeting
,
1970
.
32.
Chisholm
,
D.
,
1973
, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transf.
,
16
(
2
), pp.
347
358
. 10.1016/0017-9310(73)90063-X
33.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog
,
45
(
1
), pp.
39
48
.
34.
Chisholm
,
D.
,
1967
, “
A Theoretical Basis for the Lockhart-Martinelli Correlation
,”
Appl. Heat Transf. Div.
,
10
(
18
), pp.
1767
1778
.
35.
Yun
,
R.
, and
Kim
,
Y.
,
2003
, “
Two-Phase Pressure Drop of CO2 in Mini Tubes and Microchannels
,”
International Conference on Nanochannels, Microchannels, and Minichannels
,
36673
, pp.
507
511
.
36.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
. 10.1021/i260019a023
37.
Cooper
,
M. G.
,
1984
, “
Heat Flow in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transf.
,
16
, pp.
157
239
. 10.1016/s0065-2717(08)70205-3
38.
Pethukov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties
,”
Adv. Heat Trans.
,
6
(
503
), p.
i565
.
39.
Lemmon
,
E.
,
Huber
,
M.
,
Database, M. M.-N. Standard Reference, and 2013, U.
, “
REFPROP 9.1
”.
40.
Linlin
,
J.
,
Jianhua
,
L.
,
Liang
,
Z.
,
Qi
,
L.
, and
Xiaojin
,
X.
,
2017
, “
Characteristics of Heat Transfer for CO 2 Flow Boiling at Low Temperature in Mini-Channel
,”
Int. J. Heat Mass Transf.
,
108
, pp.
2120
2129
. 10.1016/j.ijheatmasstransfer.2016.12.113
41.
Pettersen
,
J.
,
2004
, “
Flow Vaporization of CO2 in Microchannel Tubes
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
111
121
. 10.1016/S0894-1777(03)00029-3
42.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part I: Pressure Drops
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
581
596
. 10.1016/j.expthermflusci.2010.12.010
43.
Park
,
C. Y.
, and
Hrnjak
,
P.
,
2009
, “
CO2 Flow Condensation Heat Transfer and Pressure Drop in Multi-Port Microchannels at Low Temperatures
,”
Int. J. Refrig.
,
32
(
6
), pp.
1129
1139
. 10.1016/j.ijrefrig.2009.01.030
44.
National Renewable Energy Laboratory (NREL)
,
2007
, National Solar Radiation Database 1991–2005 Update: Users Manual, NRELTP-581-41364, National Renewable Energy Laboratory, Golden, CO.
45.
Austin
,
B. T.
, and
Sumathy
,
K.
,
2011
, “
Parametric Study on the Performance of a Direct-Expansion Geothermal Heat Pump Using Carbon Dioxide
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3774
3782
. 10.1016/j.applthermaleng.2011.07.007
46.
Sarkar
,
J.
,
Bhattacharyya
,
S.
, and
Gopal
,
M. R.
,
2004
, “
Optimization of a Transcritical CO2 Heat Pump Cycle for Simultaneous Cooling and Heating Applications
,”
Int. J. Refrig.
,
27
(
8
), pp.
830
838
. 10.1016/j.ijrefrig.2004.03.006
47.
Deng
,
J.
,
Jiang
,
P.
,
Lu
,
T.
, and
Lu
,
W.
,
2007
, “
Particular Characteristics of Transcritical CO2 Refrigeration Cycle With an Ejector
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
381
388
. 10.1016/j.applthermaleng.2006.07.016
You do not currently have access to this content.