Abstract

Fabrication of micro- and nanoscale electronic components has become increasingly demanding due to device and interconnect scaling combined with advanced packaging and assembly for electronic, aerospace, and medical applications. Recent advances in additive manufacturing have made it possible to fabricate microscale, 3D interconnect structures but heat transfer during the fabrication process is one of the most important phenomena influencing the reliable manufacturing of these interconnect structures. In this study, optical absorption and scattering by three-dimensional (3D) nanoparticle packings are investigated to gain insight into micro/nano heat transport within the nanoparticles. Because drying of colloidal solutions creates different configurations of nanoparticles, the plasmonic coupling in three different copper nanoparticle packing configurations was investigated: simple cubic (SC), face-centered cubic (FCC), and hexagonal close packing (HCP). Single-scatter albedo (ω) was analyzed as a function of nanoparticle size, packing density, and configuration to assess effect for thermo-optical properties and plasmonic coupling of the Cu nanoparticles within the nanoparticle packings. This analysis provides insight into plasmonically enhanced absorption in copper nanoparticle particles and its consequences for laser heating of nanoparticle assemblies.

References

1.
Maier
,
S. A.
,
Kik
,
P. G.
,
Atwater
,
H. A.
,
Meltzer
,
S.
,
Harel
,
E.
,
Koel
,
B. E.
, and
Requicha
,
A. A.
,
2003
, “
Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides
,”
Nat. Mater.
,
2
(
4
), pp.
229
232
. 10.1038/nmat852
2.
Quinten
,
M.
,
Leitner
,
A.
,
Krenn
,
J. R.
, and
Aussenegg
,
F. R.
,
1998
, “
Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles
,”
Opt. Lett.
,
23
(
17
), pp.
1331
1333
. 10.1364/OL.23.001331
3.
Maqableh
,
M. M.
,
Huang
,
X.
,
Sung
,
S. Y.
,
Reddy
,
K. S. M.
,
Norby
,
G.
,
Victora
,
R. H.
, and
Stadler
,
B. J.
,
2012
, “
Low-Resistivity 10 nm Diameter Magnetic Sensors
,”
Nano Lett.
,
12
(
8
), pp.
4102
4109
. 10.1021/nl301610z
4.
Josell
,
D.
,
Brongersma
,
S. H.
, and
Tőkei
,
Z.
,
2009
, “
Size-Dependent Resistivity in Nanoscale Interconnects
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
231
254
. 10.1146/annurev-matsci-082908-145415
5.
Kreibig
,
U.
, and
Vollmer
,
M.
,
2013
,
Optical Properties of Metal Clusters
, Vol. Vol.
25
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
6.
Jensen
,
T. R.
,
Duval
,
M. L.
,
Kelly
,
K. L.
,
Lazarides
,
A. A.
,
Schatz
,
G. C.
, and
Van Duyne
,
R. P.
,
1999
, “
Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles
,”
J. Phys. Chem. B
,
103
(
45
), pp.
9846
9853
. 10.1021/jp9926802
7.
Tsang
,
T. Y.
,
1996
, “
Surface-Plasmon-Enhanced Third-Harmonic Generation in Thin Silver Films
,”
Opt. Lett.
,
21
(
4
), pp.
245
247
. 10.1364/OL.21.000245
8.
Félidj
,
N.
,
Aubard
,
J.
,
Lévi
,
G.
,
Krenn
,
J. R.
,
Salerno
,
M.
,
Schider
,
G.
,
Lamprecht
,
B.
,
Leitner
,
A.
, and
Aussenegg
,
F. R.
,
2002
, “
Controlling the Optical Response of Regular Arrays of Gold Particles for Surface-Enhanced Raman Scattering
,”
Phys. Rev. B
,
65
(
7
), p.
075419
. 10.1103/PhysRevB.65.075419
9.
Stockman
,
M. I.
,
Bergman
,
D. J.
,
Anceau
,
C.
,
Brasselet
,
S.
, and
Zyss
,
J.
,
2004
, “
Enhanced Second-Harmonic Generation by Metal Surfaces With Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations
,”
Phys. Rev. Lett.
,
92
(
5
), p.
057402
. 10.1103/PhysRevLett.92.057402
10.
Lamprecht
,
B.
,
Leitner
,
A.
, and
Aussenegg
,
F. R.
,
1999
, “
SHG Studies of Plasmon Dephasing in Nanoparticles
,”
Appl. Phys. B: Lasers Opt.
,
68
(
3
), pp.
419
423
. 10.1007/s003400050643
11.
Canfield
,
B. K.
,
Kujala
,
S.
,
Jefimovs
,
K.
,
Turunen
,
J.
, and
Kauranen
,
M.
,
2004
, “
Linear and Nonlinear Optical Responses Influenced by Broken Symmetry in an Array of Gold Nanoparticles
,”
Opt. Exp.
,
12
(
22
), pp.
5418
5423
. 10.1364/OPEX.12.005418
12.
Jin
,
R.
,
Jureller
,
J. E.
, and
Scherer
,
N. F.
,
2006
, “
Precise Localization and Correlation of Single Nanoparticle Optical Responses and Morphology
,”
Appl. Phys. Lett.
,
88
(
26
), p.
263111
. 10.1063/1.2213518
13.
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems
,”
Addit. Manuf.
,
12
(
Part B
), pp.
204
215
.
14.
Harvey
,
A.
,
Backes
,
C.
,
Boland
,
J. B.
,
He
,
X.
,
Griffin
,
A.
,
Szydlowska
,
B.
,
Gabbett
,
C.
,
Donegan
,
J. F.
, and
Coleman
,
J. N.
,
2018
, “
Non-resonant Light Scattering in Dispersions of 2D Nanosheets
,”
Nat. Commun.
,
9
(
1
), pp.
1
11
. 10.1038/s41467-018-07005-3
15.
Fan
,
X.
,
Zheng
,
W.
, and
Singh
,
D. J.
,
2014
, “
Light Scattering and Surface Plasmons on Small Spherical Particles
,”
Light: Sci. Appl.
,
3
(
6
), pp.
e179
e179
. 10.1038/lsa.2014.60
16.
Guerra
,
L. F.
,
Muir
,
T. W.
, and
Yang
,
H.
,
2019
, “
Single-Particle Dynamic Light Scattering: Shapes of Individual Nanoparticles
,”
Nano Lett.
,
19
(
8
), pp.
5530
5536
. 10.1021/acs.nanolett.9b02066
17.
Bosbach
,
J.
,
Martin
,
D.
,
Stietz
,
F.
,
Wenzel
,
T.
, and
Träger
,
F.
,
1999
, “
Laser-Based Method for Fabricating Monodisperse Metallic Nanoparticles
,”
Appl. Phys. Lett.
,
74
(
18
), pp.
2605
2607
. 10.1063/1.123911
18.
Yuksel
,
A.
,
Yu
,
E. T.
,
Murthy
,
J.
, and
Cullinan
,
M.
,
2017
, “
Effect of Substrate and Nanoparticle Spacing on Plasmonic Enhancement in Three-Dimensional Nanoparticle Structures
,”
J. Micro Nano Manuf.
,
5
(
4
), p.
040903
. 10.1115/1.4037770
19.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1972
, “
Optical Constants of the Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
. 10.1103/PhysRevB.6.4370
20.
Evlyukhin
,
A. B.
,
Reinhardt
,
C.
,
Zywietz
,
U.
, and
Chichkov
,
B. N.
,
2012
, “
Collective Resonances in Metal Nanoparticle Arrays With Dipole-Quadrupole Interactions
,”
Phys. Rev. B
,
85
(
24
), p.
245411
. 10.1103/PhysRevB.85.245411
21.
Kujala
,
S.
,
Canfield
,
B. K.
,
Kauranen
,
M.
,
Svirko
,
Y.
, and
Turunen
,
J.
,
2007
, “
Multipole Interference in the Second-Harmonic Optical Radiation From Gold Nanoparticles
,”
Phys. Rev. Lett.
,
98
(
16
), p.
167403
. 10.1103/PhysRevLett.98.167403
22.
Luk'yanchuk
,
B.
,
Zheludev
,
N. I.
,
Maier
,
S. A.
,
Halas
,
N. J.
,
Nordlander
,
P.
,
Giessen
,
H.
, and
Chong
,
C. T.
,
2010
, “
The Fano Resonance in Plasmonic Nanostructures and Metamaterials
,”
Nat. Mater.
,
9
(
9
), pp.
707
715
. 10.1038/nmat2810
23.
Ciracì
,
C.
,
Hill
,
R. T.
,
Mock
,
J. J.
,
Urzhumov
,
Y.
,
Fernández-Domínguez
,
A. I.
,
Maier
,
S. A.
,
Pendry
,
J. B.
,
Chilkoti
,
A.
, and
Smith
,
D. R.
,
2012
, “
Probing the Ultimate Limits of Plasmonic Enhancement
,”
Science
,
337
(
6098
), pp.
1072
1074
. 10.1126/science.1224823
24.
Zhu
,
W.
,
Esteban
,
R.
,
Borisov
,
A. G.
,
Baumberg
,
J. J.
,
Nordlander
,
P.
,
Lezec
,
H. J.
,
Aizpurua
,
J.
, and
Crozier
,
K. B.
,
2016
, “
Quantum Mechanical Effects in Plasmonic Structures With Subnanometre Gaps
,”
Nat. Commun.
,
7
(
1
), pp.
1
14
.
You do not currently have access to this content.