Abstract

In this paper, the thermal performance of an AntMiner mining machine containing 189 chips on three printed circuit board (PCBs) is experimentally studied. The numerical method is applied to analyze the local airflow and thermal distribution alongside the flow direction and shows a good agreement with the experimental results. Some hot-spot regions are identified where chips might suffer under high-temperature operating condition. Meanwhile, the highly compact arrangement may result in pronounced bypass and jeopardize the thermal performance of the mining machine rapidly; thereby, the airflow management strategy for such confined compartment is implemented. The result shows that the flowrate distribution can be notably improved. Although the total flowrate is slightly reduced by 4.4%, the maximum chip temperature on three PCBs can be reduced by 3.2 °C, 3.5 °C, and 3.0 °C, and the corresponding improvement on thermal performance reaches 13.3%, 15.6%, and 13.0%, respectively. Furthermore, the maximum temperature of the downstream chips will be reduced by 2.5 °C when incorporating the “partial bypass” design by the removal of 12 backside heat sinks. The corresponding heat transfer performance is improved by 8.9–13.9%.

References

1.
Nakamotoo
,
S.
,
2008
, “
Bitcoin: A Peer-to-Peer Electronic Cash System
”, https://www.bitcoin.org
2.
Khaled
,
A. R. A.
,
2012
, “
Heat Transfer Enhancement due to Properly Managing the Distribution of the Heat Flux: Exact Solutions
,”
Energy Convers. Manage.
,
53
(
1
), pp.
247
258
. 10.1016/j.enconman.2011.09.004
3.
Khattak
,
Z.
, and
Ali
,
H. M.
,
2019
, “
Air Cooled Heat Sink Geometries Subjected to Forced Flow: A Critical Review
,”
Int. J. Heat Mass Transfer
,
130
, pp.
141
161
. 10.1016/j.ijheatmasstransfer.2018.08.048
4.
Yu
,
Y. M.
,
Simon
,
T.
, and
Cui
,
T. H.
,
2013
, “
A Parametric Study of Heat Transfer in an Air-Cooled Heat Sink Enhanced by Actuated Plates
,”
Int. J. Heat Mass Transfer
,
64
, pp.
792
801
. 10.1016/j.ijheatmasstransfer.2013.04.065
5.
Kalman
,
H.
, and
Sher
,
E.
,
2001
, “
Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
265
282
. 10.1016/S1359-4311(00)00038-7
6.
Allen
,
P. H. G.
, and
Karayiannis
,
T. G.
,
1995
, “
Electrohydrodynamic Enhancement of Heat Transfer and Fluid Flow
,”
Heat Recovery Syst. CHP
,
15
(
5
), pp.
389
423
. 10.1016/0890-4332(95)90050-0
7.
Sara
,
O. N.
,
Pekdemir
,
T.
,
Yapici
,
S.
, and
Yilmaz
,
M.
,
2001
, “
Heat-Transfer Enhancement in a Channel Flow With Perforated Rectangular Blocks
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
509
518
. 10.1016/S0142-727X(01)00117-5
8.
Shaeri
,
M. R.
, and
Yaghoubi
,
M.
,
2009
, “
Numerical Analysis of Turbulent Convection Heat Transfer From an Array of Perforated Fins
,”
Int. J. Heat Fluid Flow
,
30
(
2
), pp.
218
228
. 10.1016/j.ijheatfluidflow.2008.12.011
9.
Al-Damook
,
A.
,
Kapur
,
N.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
2016
, “
Computational Design and Optimisation of Pin Fin Heat Sinks With Rectangular Perforations
,”
Appl. Therm. Eng.
,
105
, pp.
691
703
. 10.1016/j.applthermaleng.2016.03.070
10.
Maji
,
A.
,
Bhanja
,
D.
, and
Patowari
,
P. K.
,
2017
, “
Numerical Investigation on Heat Transfer Enhancement of Heat Sink Using Perforated pin Fins With Inline and Staggered Arrangement
,”
Appl. Therm. Eng.
,
125
, pp.
596
616
. 10.1016/j.applthermaleng.2017.07.053
11.
Kanyakam
,
S.
, and
Bureerat
,
S.
,
2011
, “
Multiobjective Evolutionary Optimization of Splayed Pin-Fin Heat Sink
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
4
), pp.
553
565
. 10.1080/19942060.2011.11015394
12.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
,
1980
, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
44
50
. 10.1115/1.3244247
13.
Chen
,
H. L.
, and
Wang
,
C. C.
,
2018
, “
Analysis and Experimental Verification of Weight Saving With Trapezoidal Base Heat Sink
,”
Appl. Therm. Eng.
,
132
, pp.
275
282
. 10.1016/j.applthermaleng.2017.12.101
14.
Chen
,
H. L.
, and
Wang
,
C. C.
,
2016
, “
Analytical Analysis and Experimental Verification of Trapezoidal Fin for Assessment of Heat Sink Performance and Material Saving
,”
Appl. Therm. Eng.
,
98
, pp.
203
212
. 10.1016/j.applthermaleng.2015.11.131
15.
Chen
,
H. L.
, and
Wang
,
C. C.
,
2017
, “
Analytical Analysis and Experimental Verification of Interleaved Parallelogram Heat Sink
,”
Appl. Therm. Eng.
,
112
, pp.
739
749
. 10.1016/j.applthermaleng.2016.10.102
16.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
. 10.1016/j.ijthermalsci.2017.05.013
17.
Ismail
,
M. F.
,
Hasan
,
M. N.
, and
Ali
,
M.
,
2014
, “
Numerical Simulation of Turbulent Heat Transfer From Perforated Plate-Fin Heat Sinks
,”
Heat Mass Transfer
,
50
(
4
), pp.
509
519
. 10.1007/s00231-013-1242-8
18.
Karamanis
,
G.
, and
Hodes
,
M.
,
2019
, “
Simultaneous Optimization of an Array of Heat Sinks
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
021001
. 10.1115/1.4042668
19.
Ramakrishnan
,
B.
,
Hadad
,
Y.
,
Alkharabsheh
,
S.
,
Chiarot
,
P. R.
,
Ghose
,
K.
,
Sammakia
,
B.
,
Gektin
,
V.
, and
Chao
,
W.
, “
Experimental Characterization of Cold Plates Used in Cooling Multi Chip Server Modules (MCM)
,”
Proceedings of 2017 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Orlando, FL
,
May 30–June 2
, IEEE, pp.
664
672
.
20.
Yang
,
F.
,
Liang
,
Z.
,
Wang
,
Z. J.
, and
Wang
,
F.
, “
Design of a low Parasitic Inductance SiC Power Module with Double-Sided Cooling
,”
Proceedings of 2017 IEEE Applied Power Electronics Conference and Exposition (APEC)
,
Tampa, FL
,
Mar. 26–30
, IEEE, pp.
3057
3062
.
21.
Daikoku
,
T.
,
Ichikawa
,
J.
,
Nishihara
,
A.
, and
Kasai
,
K.
,
2002
, “
Device and Method for Cooling Multi-Chip Modules
,”
Google Patents
,
US6351384B1
.
22.
Cole
,
A. S.
, and
Gupta
,
O. R.
,
1981
, “
Air Cooled Multi-Chip Module Having a Heat Conductive Piston Spring Loaded Against the Chips
,” Google Patents, US4246597A.
23.
Daikoku
,
T.
,
Kobayashi
,
F.
,
Ashiwake
,
N.
,
Kasai
,
K.
,
Kawamura
,
K.
, and
Idei
,
A.
,
1998
, “
Cooling Device of Multi-chip Module
,” Google Patents, DE69530466T2.
24.
Iversen
,
A. H.
,
1991
, “
Multi-Chip Module Cooling
,” Google Patents, US5001548A.
25.
Li
,
H. Y.
,
Tsai
,
G. L.
,
Chao
,
S. M.
, and
Yen
,
Y. F.
,
2012
, “
Measurement of Thermal and Hydraulic Performance of a Plate-Fin Heat Sink With a Shield
,”
Exp. Therm. Fluid. Sci.
,
42
, pp.
71
78
. 10.1016/j.expthermflusci.2012.03.032
26.
Prstic
,
S.
, and
Bar-Cohen
,
A.
,
2006
, “
Heat Shield”—An Enhancement Device for an Unshrouded, Forced Convection Heat Sink
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
172
176
. 10.1115/1.2188955
27.
Zhang
,
Y. L.
,
Liu
,
J. P.
,
Chong
,
D. T.
, and
Yan
,
J. J.
,
2013
, “
Experimental Investigation on the Heat Transfer and Flow Performances of the Fin Array With Shield in Bypass
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
674
682
. 10.1016/j.ijheatmasstransfer.2012.08.008
28.
Wang
,
C.-C.
,
2012
, “
Enhanced Heat Transfer Performance of Air-Cooled Heat Exchangers Using “Partial Bypass” Concept
,”
Heat Transfer Eng.
,
33
(
15
), pp.
1217
1219
. 10.1080/01457632.2012.692293
29.
Wang
,
C.-C.
,
Chen
,
K.-Y.
,
Liaw
,
J.-S.
, and
Tseng
,
C.-Y.
,
2012
, “
A Novel “Partial Bypass” Concept to Augment the Performance of Air-Cooled Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5367
5372
. 10.1016/j.ijheatmasstransfer.2012.05.031
30.
Wang
,
C.-C.
,
2007
,
Heat Transfer Design
,
Wu-Nan Culture Enterprise
,
Taiwan
.
You do not currently have access to this content.