Abstract

Heat transfer from an isothermally hot flat surface due to swirling coaxial turbulent jet impingement is investigated numerically. The coaxial jet construction consists of implanting a thin-walled round tube inside a coaxial outer pipe. Two different fluid streams or jets, having different average velocities, flow through the inner tube, and the annular space between the inner tube and the outer pipe. The ratio of the average velocities of the jets, the ratio of the pipe diameters, the jet exit Reynolds number, the strength of the swirl, and the separation distance from the jet exit to the impingement surface are the main parameters for this flow configuration. The effects of the swirl strength on the jet impingement heat transfer at the target surface are investigated by computing the flow and thermal fields for various combinations of the problem parameters. The presented results contain the plots of the flow streamlines, the contours of the temperature, the contours of the swirl velocity, as well as the distribution of the local and average Nusselt number on the impingement surface. It is found that, compared to the single round jet, the coaxial jet produces enhanced and more uniform heat transfer at the heated surface. The jet-spreading and mixing are affected by the imposed jet swirl which modifies the heat transfer process. Thus, the heat transfer compared to a non-swirling jet is either enhanced or diminished depending on the combination of the problem parameters.

References

1.
Ko
,
N.
, and
Kwan
,
A.
,
1976
, “
The Initial Region of Subsonic Coaxial Jets
,”
J. Fluid Mech.
,
73
(
2
), pp.
305
332
. 10.1017/S0022112076001389
2.
Kwan
,
A.
, and
Ko
,
N.
,
1977
, “
The Initial Region of Subsonic Coaxial Jets. Part 2
,”
J. Fluid Mech.
,
82
(
2
), pp.
273
287
. 10.1017/S0022112077000664
3.
Warda
,
H. A.
,
Kassab
,
S. Z.
,
Elshorbagy
,
K. A.
, and
Elsaadawy
,
E. A.
,
1999
, “
An Experimental Investigation of the Near-Field Region of Free Turbulent Round Central and Annular Jets
,”
Flow Meas. Instrum.
,
10
(
1
), pp.
1
14
. 10.1016/S0955-5986(98)00042-9
4.
Warda
,
H. A.
,
Kassab
,
S. Z.
,
Elshorbagy
,
K. A.
, and
Elsaadawy
,
E. A.
,
2001
, “
Influence of the Magnitude of the Two Initial Velocities on the Flow Field of a Coaxial Turbulent Jet
,”
Flow Meas. Instrum.
,
12
(
1
), pp.
29
35
. 10.1016/S0955-5986(00)00037-6
5.
Segalini
,
A.
, and
Talamelli
,
A.
,
2011
, “
Experimental Analysis of Dominant Instabilities in Coaxial Jets
,”
Phys. Fluids
,
23
(
2
), p.
024103
. 10.1063/1.3553280
6.
Rehab
,
H.
,
Villermaux
,
E.
, and
Hopfinger
,
E.
,
1997
, “
Flow Regimes of Large-Velocity-Ratio Coaxial Jets
,”
J. Fluid Mech.
,
345
, pp.
357
381
. 10.1017/S002211209700637X
7.
Balarac
,
G.
, and
Metais
,
O.
,
2005
, “
The Near Field of Coaxial Jets: A Numerical Study
,”
Phys. Fluids
,
17
(
6
), p.
065102
. 10.1063/1.1900786
8.
Karthikeyan
,
N.
, and
Sridhar
,
B.
,
2012
, “
Experimental and CFD Analysis on Coaxial Turbulent Jets With Different Velocity Ratios
,”
Proc. Eng.
,
38
, pp.
1883
1892
. 10.1016/j.proeng.2012.06.231
9.
Mergheni
,
M.
,
Riahi
,
Z.
,
Sautet
,
J.-C.
, and
Nasrallah
,
S.
,
2017
, “
Swirl Effects on Dynamics Characteristics of a Coaxial Jet
,”
Thermal Sci.
,
21
(
6
), pp.
2543
2552
. 10.2298/TSCI151227101M
10.
Kok
,
B.
,
Varol
,
Y.
,
Ayhan
,
H.
, and
Oztop
,
H. F.
,
2017
, “
Experimental and Computational Analysis of Thermal Mixing Characteristics of a Coaxial Jet
,”
Exp. Therm. Fluid. Sci.
,
82
, pp.
276
286
. 10.1016/j.expthermflusci.2016.11.028
11.
Ivanic
,
T.
,
Foucault
,
E.
, and
Pecheux
,
J.
,
2003
, “
Dynamics of Swirling Jet Flows
,”
Exp. Fluids
,
35
(
4
), pp.
317
324
. 10.1007/s00348-003-0646-5
12.
Giannadakis
,
A.
,
Perrakis
,
K.
, and
Panidis
,
T.
,
2008
, “
A Swirling Jet Under the Influence of a Coaxial Flow
,”
Exp. Therm. Fluid. Sci.
,
32
(
8
), pp.
1548
1563
. 10.1016/j.expthermflusci.2008.04.010
13.
Ranga Dinesh
,
K. K. J.
,
Kirkpatrick
,
M. P.
, and
Jenkins
,
K. W.
,
2010
, “
Investigation of the Influence of Swirl on a Confined Coannular Swirl Jet
,”
Comput. Fluids
,
39
(
5
), pp.
756
767
. 10.1016/j.compfluid.2009.12.004
14.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2014
, “
Transition in Vortex Breakdown Modes in a Coaxial Isothermal Unconfined Swirling Jet
,”
Phys. Fluids
,
26
(
4
), p.
043601
. 10.1063/1.4870016
15.
Celik
,
N.
, and
Eren
,
H.
,
2009
, “
Heat Transfer due to Impinging Co-Axial Jets and the Jets’ Fluid Flow Characteristics
,”
Exp. Therm. Fluid. Sci.
,
33
(
4
), pp.
715
727
. 10.1016/j.expthermflusci.2009.01.007
16.
Celik
,
N.
, and
Bettenhausen
,
D. W.
,
2012
, “
Numerical Investigation of the Co-Axial Impinging Jets With Various Diameter Ratios
,”
J. Enhanced Heat Transfer
,
19
(
2
), pp.
135
147
. 10.1615/JEnhHeatTransf.2012002414
17.
Markal
,
B.
, and
Aydin
,
O.
,
2018
, “
Experimental Investigation of Coaxial Impinging Air Jets
,”
Appl. Therm. Eng.
,
141
, pp.
1120
1130
. 10.1016/j.applthermaleng.2018.06.066
18.
Bijarchi
,
M. A.
, and
Kowsary
,
F.
,
2018
, “
Inverse Optimization Design of an Impinging Co-axial Jet in Order to Achieve Heat Flux Uniformity Over the Target Object
,”
Appl. Therm. Eng.
,
132
, pp.
128
139
. 10.1016/j.applthermaleng.2017.12.075
19.
Sharif
,
M. A. R.
,
2016
, “
Numerical Investigation of Round Turbulent Swirling Jet Impingement Heat Transfer From a Hot Surface
,”
Comput. Therm. Sci.: An Int. J.
,
8
(
6
), pp.
489
507
. 10.1615/ComputThermalScien.2015014345
20.
Salman
,
S. D.
,
Kadhum
,
A. A. H.
,
Takriff
,
M. S.
, and
Mohamad
,
A. B.
,
2014
, “
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow
,”
Adv. Mech. Eng.
,
6
, p.
631081
. 10.1155/2014/631081
21.
Ahmed
,
Z. U.
,
Al-Abdeli
,
Y. M.
, and
Guzzomi
,
F. G.
,
2016
, “
Heat Transfer Characteristics of Swirling and Non-swirling Impinging Turbulent Jets
,”
Int. J. Heat Mass Transfer
,
102
, pp.
991
1003
. 10.1016/j.ijheatmasstransfer.2016.06.037
22.
Ahmed
,
Z. U.
,
Al-Abdeli
,
Y. M.
, and
Guzzomi
,
F. G.
,
2017
, “
Flow Field and Thermal Behaviour in Swirling and Non-swirling Turbulent Impinging Jets
,”
Int. J. Therm. Sci.
,
114
, pp.
241
256
. 10.1016/j.ijthermalsci.2016.12.013
23.
Markal
,
B.
,
2018
, “
Experimental Investigation of Heat Transfer Characteristics and Wall Pressure Distribution of Swirling Coaxial Confined Impinging air Jets
,”
Int. J. Heat Mass Transfer
,
124
, pp.
517
532
. 10.1016/j.ijheatmasstransfer.2018.03.101
24.
Markal
,
B.
,
2019
, “
The Effect of Total Flowrate on the Cooling Performance of Swirling Coaxial Impinging Jets
,”
Heat Mass Transfer
,
55
(
11
), pp.
3275
3288
. 10.1007/s00231-019-02653-7
25.
Afroz
,
F.
, and
Sharif
,
M. A.
,
2019
, “
Numerical Investigation of the Heat Transfer due to Coaxial Swirling Turbulent Jet Impingement on Heated Flat Surfaces
,”
AIP Conference Proceedings
,
Dhaka, Bangladesh
,
Dec. 19–21, 2018
, p.
030008
.
26.
Laschefski
,
H.
,
Cziesla
,
T.
,
Biswas
,
G.
, and
Mitra
,
N. K.
,
1996
, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer, Part A: Appl.
,
30
(
1
), pp.
87
101
. 10.1080/10407789608913830
27.
Hofmann
,
H. M.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Measurements on Steady State Heat Transfer and Flow Structure and New Correlations for Heat and Mass Transfer in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3957
3965
. 10.1016/j.ijheatmasstransfer.2007.01.023
28.
Sagot
,
B.
,
Antonini
,
G.
,
Christgen
,
A.
, and
Buron
,
F.
,
2008
, “
Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1610
1619
. 10.1016/j.ijthermalsci.2007.10.020
29.
Guo
,
Q.
,
Wen
,
Z.
, and
Dou
,
R.
,
2017
, “
Experimental and Numerical Study on the Transient Heat-Transfer Characteristics of Circular Air-Jet Impingement on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1177
1188
. 10.1016/j.ijheatmasstransfer.2016.09.048
You do not currently have access to this content.