Abstract

The effect of the injection of externally sourced carbon dioxide (CO2) on the stability of the flameless combustion regime was evaluated numerically and experimentally, taking temperature uniformity and pollution emissions (NO and CO) as criteria. The flameless combustion regime was studied in a lab-scale furnace fueled with natural gas (NG) at a thermal power of 20 kW based on the low heating value (LHV). The CO2 was injected into the lower part of the furnace to directly affect the reaction zone. Computational fluid dynamics (CFD) simulations were performed using the ansys-fluent software. The models used to describe the turbulence, the radiation heat transfer, and the turbulence–chemistry interaction were the standard k–ɛ model, discrete ordinate model (DOM), and eddy dissipation concept (EDC) model, respectively. The NG oxidation was described with a seven-step global reaction mechanism with the EDC model. Three excess air conditions were analyzed, 20%, 25%, and 30%, combined with various CO2 injection flows. At 30% excess air, the flame exhibited destabilization without any CO2 injection. Adding CO2 attenuates the destabilization because of the dilution effect. Increasing either the CO2 or excess air flow resulted in a considerable decrease in the global temperature of the process, consequently producing an increase in CO emissions and a decrease in NO emissions. Finally, for the conditions studied, increasing the mass flow of externally sourced CO2 did not destabilize the flameless combustion regimen. This result shows the potential of the implementation of flameless combustion in industrial processes where CO2 is releasing as a result of a reaction external to the combustion process, such as cement, ammonia, or lime production among others.

References

1.
Ellabban
,
O.
,
Abu-Rub
,
H.
, and
Blaabjerg
,
F.
,
2014
, “
Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology
,”
Renewable Sustainable Energy Rev.
,
39
(
1
), pp.
748
764
. 10.1016/j.rser.2014.07.113
2.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India’s Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
030801
. 10.1115/1.4045584
3.
Cho
,
E.
,
Danon
,
B.
,
Jong
,
W.
, and
Roekaerts
,
D.
,
2011
, “
Behavior of a 300 kW th Regenerative Multi-Burner Flameless Oxidation Furnace
,”
Appl. Energy
,
88
(
12
), pp.
4952
4959
. 10.1016/j.apenergy.2011.06.039
4.
Duwig
,
C.
,
Stankovic
,
D.
,
Fuchs
,
L.
,
Li
,
G.
, and
Gutmark
,
E.
,
2008
, “
Experimental and Numerical Study of Flameless Combustion in a Model Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
180
(
2
), pp.
279
295
. 10.1080/00102200701739164
5.
Xing
,
F.
,
2017
, “
Flameless Combustion with Liquid Fuel: A Review Focusing on Fundamentals and Gas Turbine Application
,”
Appl. Energy
,
193
(
1
), pp.
28
51
. 10.1016/j.apenergy.2017.02.010
6.
Sánchez
,
M.
,
Cadavid
,
F.
, and
Amell
,
A.
,
2013
, “
Experimental Evaluation of a 20 kW Oxygen Enhanced Self-Regenerative Burner Operated in Flameless Combustion Mode
,”
Appl. Energy
,
111
(
1
), pp.
240
246
. 10.1016/j.apenergy.2013.05.009
7.
Agrawal
,
A.
, and
Ghoshdastidar
,
P. S.
,
2018
, “
Computer Simulation of Heat Transfer in a Rotary Lime Kiln Ashish
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031008
. 10.1115/1.4039299
8.
Cui
,
D.
,
Deng
,
Z.
, and
Liu
,
Z.
,
2019
, “
China’s Non-Fossil Fuel CO2 Emissions From Industrial Processes
,”
Appl. Energy
,
254
(
1
), pp.
113537
. 10.1016/j.apenergy.2019.113537
9.
Lammel
,
O.
,
Schmitz
,
G.
,
Aigner
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
. 10.1115/1.4001825
10.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
,
2008
, “
Analysis of the Pollutant Formation in the FLOX Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011503
. 10.1115/1.2747266
11.
Beychok
,
M. R.
,
1973
, “
NOx Emission From Fuel Combustion Controlled
,”
Oil Gas J.
,
71
(
1
), pp.
53
56
.
12.
Danon
,
B.
,
Cho
,
E. S.
,
Jong
,
W.
, and
Roekaerts
,
D. J.
,
2011
, “
Numerical Investigation of Burner Positioning Effects in a Multi-Burner Flameless Combustion Furnace
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3885
3896
. 10.1016/j.applthermaleng.2011.07.036
13.
Colorado
,
A. F.
,
Herrera
,
B. A.
, and
Amell
,
A.
,
2010
, “
Performance of a Flameless Combustion Furnace Using Biogas and Natural Gas
,”
Bioresour. Technol.
,
101
(
7
), pp.
2443
2449
. 10.1016/j.biortech.2009.11.003
14.
Sabia
,
P.
,
Lubrano
,
M.
,
Giudicianni
,
P.
,
Sorrentino
,
G.
,
Ragucci
,
R.
, and
Joannon
,
M.
,
2015
, “
CO2 and H2O Effect on Propane Auto-Ignition Delay Times Under MILD Combustion Operative Conditions
,”
Combust. Flame
,
162
(
3
), pp.
533
543
. 10.1016/j.combustflame.2014.08.009
15.
Stadler
,
H.
,
Ristic
,
D.
,
Förster
,
M.
,
Schuster
,
A.
,
Kneer
,
R.
, and
Scheffknecht
,
G.
,
2009
, “
NOx-emissions From Flameless Coal Combustion in Air, Ar/O2 and CO2/O2
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3131
3138
. 10.1016/j.proci.2008.06.025
16.
Tian
,
H.
,
Liu
,
Z.
,
Wang
,
F.
, and
Hu
,
Z.
,
2017
, “
Effects of CO2 Dilution on Flameless Combustion and NO Generation of Different Fuels
,”
J. Chin. Soc. Power Eng.
,
37
(
6
), pp.
440
446
.
17.
Tu
,
Y.
,
Xu
,
M.
,
Zhou
,
D.
,
Wang
,
Q.
,
Yang
,
W.
, and
Liu
,
H.
,
2019
, “
CFD and Kinetic Modelling Study of Methane MILD Combustion in O2/N2, O2/CO2 and O2/H2O Atmospheres
,”
Appl. Energy
,
240
(
1
), pp.
1003
1013
. 10.1016/j.apenergy.2019.02.046
18.
López
,
Y.
,
García
,
A.
, and
Amell
,
A.
,
2020
, “
A Numerical Analysis of the Effect of Atmospheric Pressure on the Performance of a Heating System With a Self-Recuperative Burner
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031016
. 10.1115/1.4045021
19.
Launder
,
B. E.
,
1972
, “
Mathematical Models of Turbulence
,”
J. Fluid Mech
,
57
(
4
), pp.
826
828
.
20.
Reddy
,
V. M.
,
Sawant
,
D.
,
Trivedi
,
D.
, and
Kumar
,
S.
,
2013
, “
Studies on a Liquid Fuel Based Two Stage Flameless Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3319
3326
. 10.1016/j.proci.2012.06.028
21.
Jaidi
,
J.
,
2017
, “
CFD Studies of Flameless Combustion
,”
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017)
,
Hyderabad, India
,
Dec. 27–30
.
22.
Magnussen
,
F.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th American Institute of Aeronautics and Astronautics Aerospace Science Meeting
,
St. Louis
,
Jan. 12–15
, p.
7
.
23.
Ghadamgahi
,
M.
,
Ölund
,
P.
,
Ekman
,
T.
,
Andersson
,
N.
, and
Jönsson
,
P.
,
2016
, “
A Comparative CFD Study on Simulating Flameless Oxy-Fuel Combustion in a Pilot-Scale Furnace
,”
J. Combust.
,
2016
(
1
), pp.
6735971
. 10.1155/2016/6735971
24.
Pesenti
,
B.
, and
Lybaert
,
P.
,
2006
, “
Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace
,”
Turkish J. Eng. Environ. Sci.
,
30
(
3
), pp.
135
143
.
25.
Mancini
,
M.
,
Schwöppe
,
P.
,
Weber
,
R.
, and
Orsino
,
S.
,
2007
, “
On Mathematical Modelling of Flameless Combustion
,”
Combust. Flame
,
150
(
1–2
), pp.
54
59
. 10.1016/j.combustflame.2007.03.007
26.
Tu
,
Y.
,
2015
, “
Numerical Study of H2O Addition Effects on Pulverized Coal Oxy-MILD Combustion
,”
Fuel Process. Technol.
,
138
(
1
), pp.
252
262
. 10.1016/j.fuproc.2015.05.031
27.
Pope
,
S. B.
,
1997
, “
Computationally Efficient Implementation of Combustion Chemistry Using In Situ Adaptive Tabulation
,”
Combust. Theory Model.
,
1
(
1
), pp.
41
63
. 10.1080/713665229
28.
Kim
,
J. P.
,
Schnell
,
U.
, and
Scheffknecht
,
G.
,
2008
, “
Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas
,”
Combust. Sci. Technol.
,
2202
(
4
), pp.
565
592
. 10.1080/00102200701838735
29.
Wang
,
L.
,
Liu
,
Z.
,
Chen
,
S.
, and
Zheng
,
C.
,
2012
, “
Comparison of Different Global Combustion Mechanisms Under Hot and Diluted Oxidation Conditions
,”
Combust. Sci. Technol.
,
2202
(
2
), pp.
259
276
. 10.1080/00102202.2011.635612
30.
Westbrook
,
C. K.
, and
Livermore
,
L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuel in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
. 10.1080/00102208108946970
31.
Chui
,
E. H.
,
1990
, “
A Finite Volumen Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
. 10.1115/1.2910394
32.
Amell
,
A.
,
Herrera
,
B.
, and
Sepúlveda
,
C.
,
2010
, “
Metodología para el desarrollo de sistemas de combustión sin llama
,”
Inf. Tecnológica
,
21
(
1
), pp.
17
22
. 10.4067/s0718-07642010000100004
33.
Juan
,
D.
, and
Amell
,
A.
,
2017
, “
Estudio del régimen de combustión sin llama ante la variación de la carga térmica
,”
Ing. y Cienc.
,
13
(
25
), pp.
185
208
. 10.17230/ingciencia.13.25.8
34.
Múnera
,
B.
,
Amell
,
A.
, and
Sierra
,
F.
,
2009
, “
Modelos para el estudio fenomenológico de la combustión sin llama con simulación numérica
,”
Ing. e Investig.
,
29
(
2
), pp.
70
76
.
35.
Ghadamgahi
,
M.
,
Ölund
,
P.
,
Ekman
,
T.
,
Andersson
,
N.
, and
Jönsson
,
P.
,
2018
, “
Numerical and Experimental Study on Flameless oxy-Fuel Combustion in a Pilot- Scale and a Real-Size Industrial Furnace
,”
Appl. Therm. Eng.
,
141
(
1
), pp.
788
797
. 10.1016/j.applthermaleng.2018.01.009
36.
Edwards
,
D. K.
, and
Matavosian
,
R.
,
1984
, “
Scaling Rules for Total Absorptivity and Emissivity of Gases.pdf
,”
Heat Transf.
,
106
(
4
), pp.
684
689
. 10.1115/1.3246739
37.
Celik
,
I.
,
Guia
,
U.
, and
Roache
,
P.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
J. Fuids Eng.
,
130
(
7
), pp.
1
4
.
You do not currently have access to this content.