Abstract

This work evaluated the performance of a combustion chamber operating with a self-recuperative burner at various atmospheric pressures by means of computational fluid dynamics (CFD) simulation. The aim was to determine the effect of atmospheric pressure on the main variables of the combustion system through mathematical correlations and numerical simulations. Parameters such as heat transfer from flue gases to the load, fluid dynamic inside the combustion chamber volume, exhaust gas composition, and burner effectiveness were monitored to analyze the performance of the reheating furnace and the self-recuperative burner. Three atmospheric pressure conditions were examined corresponding to different meters above sea level (masl) altitudes: 1 atm (0 masl), 0.85 atm (1550 masl), and 0.74 atm (2600 masl). The simulations used an axisymmetric 2D geometry of the system in steady state, where the heat exchanger of the self-recuperative burner was considered. It was found that the Eddy dissipation concept (EDC) model, associated with a reduced mechanism, presented good results for temperature and species concentration with low computational time. Two cases were compared: one maintained the fuel, combustion air, and ejection air mass flows constant at sea-level operation values with changing atmospheric pressures, referred to as the corrected case, while the other, not-corrected case, allowed the mass flows to vary as a result of changes in auxiliary performance with the atmospheric pressure. The CFD results indicated that atmospheric pressure did not have a significant effect on the performance of the combustion and heating systems when the mass flows were corrected for the effects of atmospheric pressure. However, when these mass flows were not corrected, the average temperature of the process decreased, while the concentration of CO and CO2 in the exhaust gases increased and the heat transfer on the load by radiation decreased. Finally, the performance of the self-recuperative burner remained constant with atmospheric pressure if the mass flows were corrected and increased when the mass flows were not corrected.

References

1.
Seale
,
J. L.
, Jr
, and
Solano
,
A. A.
,
2012
, “
The Changing Demand for Energy in Rich and Poor Countries Over 25 Years
,”
Energy Econ.
,
34
(
6
), pp.
1834
1844
. 10.1016/j.eneco.2012.07.019
2.
Unidad de Planeación Minero Energética-UPME
. Proyección de Demanda de Energía en Colombia, Energía, Min., (
2010
), p.
90
.
3.
Unidad de planeación minero energética-UPME
. Plan De Acción Indicativo De Eficiencia Energética 2016–2021, (
2017
), p.
119
.
4.
Amell
,
A. A.
,
Yepes
,
H. A.
, and
Cadavid
,
F. J.
,
2014
, “
Numerical and Experimental Study on Laminar Burning Velocity of Syngas Produced from Biomass Gasification in Sub-Atmospheric Pressures
,”
Int. J. Hydrogen Energy
,
39
(
16
), pp.
8797
8802
. 10.1016/j.ijhydene.2013.12.030
5.
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1991
, “
An Experimental and Computational Study of the Burning Rates of Ultra-Lean to Moderately-Rich H2/O2/N2laminar Flames With Pressure Variations
,”
Symp. Combust.
,
23
(
1
), pp.
333
340
. 10.1016/S0082-0784(06)80276-6
6.
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1990
, “
Chain Mechanism in the Overall Reaction Orders in Laminar Flame Propagation
,”
Combust. Flame
,
80
(
1
), pp.
7
16
. 10.1016/0010-2180(90)90049-W
7.
Amell
,
A. A.
,
2007
, “
Influence of Altitude on the Height of Blue Cone in a Premixed Flame
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
408
412
. 10.1016/j.applthermaleng.2006.07.013
8.
Zeng
,
Y.
,
Fang
,
J.
,
Wang
,
J.
,
Li
,
J.
,
Tu
,
R.
, and
Zhang
,
Y.
,
2013
, “
Momentum-Dominated Methane Jet Flame at Sub-Atmospheric Pressure
,”
The 9th Asia-Oceania Symposium on Fire Science and Technology
,
Hefei, China
,
Oct. 17–20
, pp.
924
931
. http://dx.doi.org/10.1016/j.proeng.2013.08.144
9.
Burbano
,
H. J.
,
Pareja
,
J.
, and
Amell
,
A. A.
,
2011
, “
Laminar Burning Velocities and Flame Stability Analysis of Syngas Mixtures at Sub-Atmospheric Pressures
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3243
3252
. 10.1016/j.ijhydene.2010.12.001
10.
Hu
,
L.
,
Wang
,
Q.
,
Delichatsios
,
M.
,
Tang
,
F.
,
Zhang
,
X.
, and
Lu
,
S.
,
2013
, “
Flame Height and Lift-off of Turbulent Buoyant Jet Diffusion Flames in a Reduced Pressure Atmosphere
,”
Fuel
,
109
, pp.
234
240
. 10.1016/j.fuel.2012.12.050
11.
Wang
,
Q.
,
Hu
,
L.
,
Zhang
,
M.
,
Tang
,
F.
,
Zhang
,
X.
, and
Lu
,
S.
,
2014
, “
Lift-Off of Jet Diffusion Flame in Sub-Atmospheric Pressures: An Experimental Investigation and Interpretation Based on Laminar Flame Speed
,”
Combust. Flame
,
161
(
4
), pp.
1125
1130
. 10.1016/j.combustflame.2013.10.021
12.
Wang
,
Q.
,
Hu
,
L.
,
Tang
,
F.
,
Zhang
,
X.
, and
Delichatsios
,
M.
,
2013
, “
Characterization and Comparison of Flame Fluctuation Range of a Turbulent Buoyant Jet Diffusion Flame under Reduced- and Normal Pressure Atmosphere
,”
The 9th Asia-Oceania Symposium on Fire Science and Technology
,
Hefei, China
,
Oct. 17–20
, pp.
211
218
. http://dx.doi.org/10.1016/j.proeng.2013.08.057
13.
Fumo
,
N.
,
Mago
,
P. J.
, and
Jacobs
,
K.
,
2011
, “
Design Considerations for Combined Cooling, Heating, and Power Systems at Altitude
,”
Energy Convers. Manag.
,
52
(
2
), pp.
1459
1469
. 10.1016/j.enconman.2010.10.009
14.
García
,
A. M.
, and
Amell
,
A. A.
,
2018
, “
A Numerical Analysis of the Effect of Heat Recovery Burners on the Heat Transfer and Billet Heating Characteristics in a Walking-Beam Type Reheating Furnace
,”
Int. J. Heat Mass Transf.
,
127
, pp.
1208
1222
. 10.1016/j.ijheatmasstransfer.2018.07.121
15.
Prieler
,
R.
,
Mayr
,
B.
,
Demuth
,
M.
,
Holleis
,
B.
, and
Hochenauer
,
C.
,
2016
, “
Prediction of the Heating Characteristic of Billets in a Walking Hearth Type Reheating Furnace Using CFD
,”
Int. J. Heat Mass Transf.
,
92
, pp.
675
688
. 10.1016/j.ijheatmasstransfer.2015.08.056
16.
Agnani
,
E.
,
Cavazzuti
,
M.
, and
Corticelli
,
M. A.
,
2015
, “
Optimization of Recuperative Burners for Industrial Kilns Through CFD Simulation
,”
ASME ATI UIT 2015 Thermal Energy Systems: Production, Storage, Utilization and the Environment.
,
Napoli, Italy
,
May 17–20
.
17.
Han
,
Y.
,
Liu
,
F.
, and
Ran
,
X.
,
2018
, “
Numerical Analysis of Flow Fields and Temperature Fields in a Regenerative Heating Furnace for Steel Pipes
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031010
. 10.1115/1.4038702
18.
Casal
,
J. M.
,
Porteiro
,
J.
,
Míguez
,
J. L.
, and
Vázquez
,
A.
,
2015
, “
New Methodology for CFD Three-Dimensional Simulation of a Walking Beam Type Reheating Furnace in Steady State
,”
Appl. Therm. Eng.
,
86
, pp.
69
80
. 10.1016/j.applthermaleng.2015.04.020
19.
Prieler
,
R.
,
Mayr
,
B.
,
Demuth
,
M.
,
Holleis
,
B.
, and
Hochenauer
,
C.
,
2016
, “
Numerical Analysis of the Transient Heating of Steel Billets and the Combustion Process Under Air-Fired and Oxygen Enriched Conditions
,”
Appl. Therm. Eng.
,
103
, pp.
252
263
. 10.1016/j.applthermaleng.2016.04.091
20.
Morgado
,
T.
,
Coelho
,
P. J.
, and
Talukdar
,
P.
,
2015
, “
Assessment of Uniform Temperature Assumption in Zoning on the Numerical Simulation of a Walking Beam Reheating Furnace
,”
Appl. Therm. Eng.
,
76
, pp.
496
508
. 10.1016/j.applthermaleng.2014.11.054
21.
Ishii
,
T.
,
Zhang
,
C.
, and
Hino
,
Y.
,
2002
, “
Numerical Study of the Performance of a Regenerative Furnace
,”
Heat Transf. Eng.
,
23
(
4
), pp.
23
33
. 10.1080/01457630290090473
22.
Eclipse
.
2012
, Self-Recuperative Burners Model TJSR0035-Datasheet. p.
0–4
.
23.
Baukal
,
C.
,
2003
,
Industrial Burners Handbook
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
24.
Nilsson
,
O.
,
Mehling
,
H.
,
Horn
,
R.
,
Fricke
,
J.
,
Hofmann
,
R.
,
Müller
,
S. G.
,
Eckstein
,
R.
, and
Hofmann
,
D.
,
1997
, “
Determination of the Thermal Diffusivity and Conductivity of Monocrystalline Silicon Carbide (300–2300 K)
,”
High Temp. Press
,
29
, pp.
73
79
. 10.1068/htec142
25.
Lapuerta
,
M.
,
Armas
,
O.
,
Agudelo
,
J. R.
, and
Sánchez
,
C. A.
,
2006
, “
Study of the Altitude Effect on Internal Combustion Engine Operation
,”
Inf. Tecnol.
,
17
(
5
), pp.
1
13
. 10.4067/S0718-07642006000500005
26.
Ecipse TJSR v5
, 208C, Bulletin.
27.
Mitchell
,
J.W.
,
1958
,
Design Parameters for Subsonic Air-Air Ejectors
.
28.
Amell
,
A.
,
Copete
,
H.
, and
Cadavid
,
F.
,
2007
, “
Development and Evaluation of an Autoregenerative and Radiant Combustion System for High Temperature Process in SME
,”
Dyna
,
72
(
147
), pp.
61
69
.
29.
ANSYS Inc
,
2017
,
ANSYS Fluent Theory Guide
, 18th ed.,
Canonsburg, PA
.
30.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,”
Comput. Fluids
,
24
(
Aug.
), pp.
227
238
. 10.1016/0045-7930(94)00032-T
31.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
. 10.1115/1.2910394
32.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
602
608
. 10.1115/1.3245174
33.
Edwards
,
D. K.
, and
Matavosian
,
R.
,
1984
, “
Scaling Rules for Total Absorptivity and Emissivity of Gases
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
684
689
. 10.1115/1.3246739
34.
Han
,
S. H.
,
Chang
,
D.
, and
Kim
,
C. Y.
,
2010
, “
A Numerical Analysis of Slab Heating Characteristics in a Walking Beam Type Reheating Furnace
,”
Int. J. Heat Mass Transf.
,
53
(
19–20
), pp.
3855
3861
. 10.1016/j.ijheatmasstransfer.2010.05.002
35.
Han
,
S. H.
,
Chang
,
D.
, and
Huh
,
C.
,
2011
, “
Efficiency Analysis of Radiative Slab Heating in a Walking-Beam-Type Reheating Furnace
,”
Energy
,
36
(
2
), pp.
1265
1272
. 10.1016/j.energy.2010.11.018
36.
Prieler
,
R.
,
Demuth
,
M.
,
Spoljaric
,
D.
, and
Hochenauer
,
C.
,
2014
, “
Evaluation of a Steady Flamelet Approach for Use in Oxy-Fuel Combustion
,”
Fuel
,
118
, pp.
55
68
. 10.1016/j.fuel.2013.10.052
37.
Mayr
,
B.
, and
Prieler
,
R.
,
2015
, “
CFD and Experimental Analysis of a 115 kW Natural Gas Fired Lab-Scale Furnace Under Oxy-Fuel and Air—Fuel Conditions
,”
Fuel
,
159
(
July
), pp.
864
875
. 10.1016/j.fuel.2015.07.051
38.
Mohammad Ghasemi
,
H.
,
Gilani
,
N.
, and
Towfighi Daryan
,
J.
,
2017
, “
Investigating the Effect of Fuel Rate Variation in an Industrial Thermal Cracking Furnace With Alternative Arrangement of Wall Burners Using Computational Fluid Dynamics Simulation
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041012
. 10.1115/1.4036801
39.
Pope
,
S. B.
,
1997
, “
Computationally Efficient Implementation of Combustion Chemistry Using In Situ Adaptive Tabulation
,”
Combust. Theory Model
,
1
(
1
), pp.
41
63
. 10.1080/713665229
40.
Danon
,
B.
,
Cho
,
E. S.
,
De Jong
,
W.
, and
Roekaerts
,
D. J. E. M.
,
2011
, “
Numerical Investigation of Burner Positioning Effects in a Multi-Burner Flameless Combustion Furnace
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3885
3896
. 10.1016/j.applthermaleng.2011.07.036
41.
Prieler
,
R.
,
Demuth
,
M.
,
Spoljaric
,
D.
, and
Hochenauer
,
C.
,
2015
, “
Numerical Investigation of the Steady Flamelet Approach Under Different Combustion Environments
,”
Fuel
,
140
, pp.
731
743
. 10.1016/j.fuel.2014.10.006
42.
University of California at San Diego
,
2016
, Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism.
43.
Kasakov
,
A.
, and
Frenklach
,
M.
,
1994
,
Reduced Reaction Sets Based on GRI-Mech
,
University of California at Berkeley
,
Berkeley, CA
.
44.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuel in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
. 10.1080/00102208108946970
45.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transf.
,
18
(
11
), pp.
1323
1329
. 10.1016/0017-9310(75)90243-4
46.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transf.
,
18
(
9
), pp.
1049
1053
. 10.1016/0017-9310(75)90222-7
47.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1999
,
Fundamentals of Heat Mass Transfer
, 4th ed.,
Prentice Hall
,
México
.
You do not currently have access to this content.