Abstract

The paper presents an entropy generation minimization study for a solar parabolic trough collector (PTC) operating with SiO2–water nanofluid using a genetic algorithm (GA) and artificial neural network (ANN). The characteristic variables of nanoparticle volumetric concentration (0.01 ≤ φ ≤ 0.05), mass flow rate (0.1 ≤ ṁ ≤ 1.1 kg/s), and inlet temperatures (350–550 K) are used to analyze the rate of entropy generated in the PTC. GA is used in optimizing the entropy generation rate for the specified parameters, while ANN is used for predicting and observing the behavior of these parameters on the rate of entropy generation in the collector. The optimum ANN model is derived with one hidden layer of 18 neurons when training the input variables for the entropy generation predictions. The optimal mean square error used as a performance validation of the model is 0.02288 for training and 0.0282 for testing with an R2 value of 0.9999. The impact of the defined parameters on the entropy generation rate is presented in Sec. 5. It is concluded that machine learning techniques can be an efficient tool for predicting the rate of entropy generation in a collector within the constraint of the defined parameters.

References

1.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
. 10.1016/j.applthermaleng.2016.11.201
2.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Effects of Synthetic Oil Nanofluids and Absorber Geometries on the Exergetic Performance of the Parabolic Trough Collector
,”
Int. J. Energy Res.
,
42
(
11
), pp.
3559
3574
. 10.1002/er.4099
3.
Güven
,
H. M.
, and
Bannerot
,
R. B.
,
1986
,
Determination of Error Tolerances for the Optical Design of Parabolic Troughs for Developing Countries
,”
Sol. Energy
,
36
(
6
), pp.
535
550
. 10.1016/0038-092X(86)90018-6
4.
Odeh
,
S. D.
, and
Morrison
,
G. L.
,
2006
, “
Optimization of Parabolic Trough Solar Collector System
,”
Int. J. Energy Res.
,
30
(
4
), pp.
259
271
. 10.1002/er.1153
5.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
R. A.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,”
Sandia Natl. Lab.
,
96
, p.
140
, Technical Report. http://dx.doi.org/10.2172/70756
6.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renew. Energy
,
94
, pp.
213
222
. 10.1016/j.renene.2016.03.062
7.
Muñoz
,
J.
, and
Abánades
,
A.
,
2011
, “
Analysis of Internal Helically Finned Tubes for Parabolic Trough Design by CFD Tools
,”
Appl. Energy
,
88
(
11
), pp.
4139
4149
. 10.1016/j.apenergy.2011.04.026
8.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renew. Energy
,
93
, pp.
125
141
. 10.1016/j.renene.2016.02.046
9.
Amina
,
B.
,
Miloud
,
A.
,
Samir
,
L.
,
Abdelylah
,
B.
, and
Solano
,
J. P.
,
2016
, “
Heat Transfer Enhancement in a Parabolic Trough Solar Receiver Using Longitudinal Fins and Nanofluids
,”
J. Therm. Sci.
,
25
(
5
), pp.
410
417
. 10.1007/s11630-016-0878-3
10.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051009
. 10.1115/1.4040076
11.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Daniil
,
I.
,
2016
, “
The Use of Gas Working Fluids in Parabolic Trough Collectors—An Energetic and Exergetic Analysis
,”
Appl. Therm. Eng.
,
109
, pp.
1
14
. 10.1016/j.applthermaleng.2016.08.043
12.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2013
, “
Effects of Physical Parameters on Natural Convection in a Solar Collector Filled With Nanofluid
,”
Heat Transf.—Asian Res.
,
42
(
1
), pp.
73
88
. 10.1002/htj.21026
13.
Gorla
,
R. S. R.
,
Chamkha
,
A. J.
, and
Rashad
,
A. M.
,
2011
, “
Mixed Convective Boundary Layer Flow Over a Vertical Wedge Embedded in a Porous Medium Saturated With a Nanofluid: Natural Convection Dominated Regime
,”
Nanoscale Res. Lett.
,
6
(
207
), pp.
1
9
. 10.1186/1556-276x-6-207
14.
Sudarsana Reddy
,
P.
, and
Chamkha
,
A. J.
,
2016
, “
Influence of Size, Shape, Type of Nanoparticles, Type and Temperature of the Base Fluid on Natural Convection MHD of Nanofluids
,”
Alexandria Eng. J.
,
55
(
1
), pp.
331
341
. 10.1016/j.aej.2016.01.027
15.
Zaraki
,
A.
,
Ghalambaz
,
M.
,
Chamkha
,
A. J.
,
Ghalambaz
,
M.
, and
De Rossi
,
D.
,
2015
, “
Theoretical Analysis of Natural Convection Boundary Layer Heat and Mass Transfer of Nanofluids: Effects of Size, Shape and Type of Nanoparticles, Type of Base Fluid and Working Temperature
,”
Adv. Powder Technol.
,
26
(
3
), pp.
935
946
. 10.1016/j.apt.2015.03.012
16.
Ghasemi
,
S. E.
, and
Ranjbar
,
A. A.
,
2016
, “
Thermal Performance Analysis of Solar Parabolic Trough Collector Using Nano Fluid as Working Fluid: A CFD Modelling Study
,”
J. Mol. Liq.
,
222
, pp.
159
166
. 10.1016/j.molliq.2016.06.091
17.
Subramani
,
J.
,
Nagarajan
,
P. K.
,
Mahian
,
O.
, and
Sathyamurthy
,
R.
,
2018
, “
Efficiency and Heat Transfer Improvements in a Parabolic Trough Solar Collector Using TiO2 Nanofluids Under Turbulent Flow Regime
,”
Renew. Energy
,
119
, pp.
19
31
. 10.1016/j.renene.2017.11.079
18.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector with Cu-Therminol®VP-1 Nanofluid
,”
Energy Convers. Manage.
,
120
, pp.
449
465
. 10.1016/j.enconman.2016.04.106
19.
Wang
,
Y.
,
Xu
,
J.
,
Liu
,
Q.
,
Chen
,
Y.
, and
Liu
,
H.
,
2016
, “
Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/Synthetic Oil Nanofluid
,”
Appl. Therm. Eng.
,
107
, pp.
469
478
. 10.1016/j.applthermaleng.2016.06.170
20.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2016
, “
Heat Transfer and Entropy Generation in a Parabolic Trough Receiver With Wall-Detached Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
99
, pp.
238
257
. 10.1016/j.ijthermalsci.2015.08.015
21.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
. 10.1115/1.3451063
22.
Awad
,
M. M.
, and
Muzychk
,
Y. S.
,
2012
,
Thermodynamic Optimization Heat Exch.—Basics Des. Appl.
, Vol.
1979
,
Intech publishing
.
23.
Awad
,
M. M.
,
2012
, “
A New Definition of Bejan Number
,”
Therm. Sci.
,
16
(
4
), pp.
1251
1253
. 10.2298/TSCI12041251A
24.
Awad
,
M. M.
, and
Lage
,
J. L.
,
2013
, “
Extending the Bejan Number to a General Form
,”
Therm. Sci.
,
17
(
2
), pp.
631
633
. 10.2298/TSCI130211032A
25.
Awad
,
M. M.
,
2013
, “
Hagen Number Versus Bejan Number
,”
Therm. Sci.
,
17
(
4
), pp.
1245
1250
. 10.2298/TSCI1304245A
26.
Awad
,
M. M.
,
2015
, “
A Review of Entropy Generation in Microchannels
,”
Adv. Mech. Eng.
,
7
(
12
), pp.
1
32
.
27.
Lorenzini
,
G.
, and
Mahian
,
O.
,
2018
, “
Entropy in Nanofluids
,”
Entropy
,
20
(
5
), pp.
1
4
.
28.
Charjouei Moghadam
,
M.
,
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041011
. 10.1115/1.4036854
29.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Performance Analysis of a Minichannel-Based Solar Collector Using Different Nanofluids
,”
Energy Convers. Manage.
,
88
, pp.
129
138
. 10.1016/j.enconman.2014.08.021
30.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transf.
,
78
, pp.
64
75
. 10.1016/j.ijheatmasstransfer.2014.06.051
31.
Okonkwo
,
E. C.
,
Abid
,
M.
,
Ratlamwala
,
T. A. H.
,
Abbasoglu
,
S.
, and
Dagbasi
,
M.
,
2018
, “
Optimal Analysis of Entropy Generation and Heat Transfer in Parabolic Trough Collector Using Green-Synthesized TiO2/Water Nanofluids
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
0310111
. 10.1115/1.4041847
32.
Atieh
,
M.
,
Gharabaghi
,
B.
, and
Rudra
,
R.
,
2015
, “
Entropy-Based Neural Networks Model for Flow Duration Curves at Ungauged Sites
,”
J. Hydrol.
,
529
(
3
), pp.
1007
1020
. 10.1016/j.jhydrol.2015.08.068
33.
Kumari
,
S.
,
Tiyyagura
,
H. R.
,
Douglas
,
T. E. L.
,
Mohammed
,
E. A. A.
,
Adriaens
,
A.
,
Fuchs-Godec
,
R.
,
Mohan
,
M. K.
, and
Skirtach
,
A. G.
,
2018
, “
ANN Prediction of Corrosion Behaviour of Uncoated and Biopolymers Coated cp-Titanium Substrates
,”
Mater. Des.
,
157
, pp.
35
51
. 10.1016/j.matdes.2018.07.005
34.
Liu
,
Y.
,
Yu
,
S.
,
Zhu
,
Y.
,
Wang
,
D.
, and
Liu
,
J.
,
2018
, “
Modeling, Planning, Application and Management of Energy Systems for Isolated Areas: A Review
,”
Renew. Sustain. Energy Rev.
,
82
(
1
), pp.
460
470
. 10.1016/j.rser.2017.09.063
35.
Soufi
,
M. D.
,
Ghobadian
,
B.
,
Najafi
,
G.
,
Sabzimaleki
,
M.
, and
Jaliliantabar
,
F.
,
2015
, “
Performance and Exhaust Emissions of a SI Two-Stroke Engine With Biolubricants Using Artificial Neural Network
,”
Energy Procedia.
,
75
, pp.
3
9
. 10.1016/j.egypro.2015.07.127
36.
Hasani
,
G.
,
Daraei
,
H.
,
Shahmoradi
,
B.
,
Gharibi
,
F.
,
Maleki
,
A.
,
Yetilmezsoy
,
K.
, and
McKay
,
G.
,
2018
, “
A Novel ANN Approach for Modeling of Alternating Pulse Current Electrocoagulation-Flotation (APC-ECF) Process: Humic Acid Removal From Aqueous Media
,”
Process Saf. Environ. Prot.
,
117
, pp.
111
124
. 10.1016/j.psep.2018.04.017
37.
Raut
,
R. D.
,
Priyadarshinee
,
P.
,
Gardas
,
B. B.
, and
Jha
,
M. K.
,
2018
, “
Analyzing the Factors Influencing Cloud Computing Adoption Using Three Stage Hybrid SEM-ANN-ISM (SEANIS) Approach
,”
Technol. Forecast. Soc. Change.
,
134
, pp.
98
123
. 10.1016/j.techfore.2018.05.020
38.
Sivaneasan
,
B.
,
Yu
,
C. Y.
, and
Goh
,
K. P.
,
2017
, “
Solar Forecasting Using ANN With Fuzzy Logic Pre-Processing
,”
Energy Procedia.
,
143
, pp.
727
732
. 10.1016/j.egypro.2017.12.753
39.
Tian
,
Z.
,
Gu
,
B.
,
Yang
,
L.
, and
Lu
,
Y.
,
2015
, “
Hybrid ANN-PLS Approach to Scroll Compressor Thermodynamic Performance Prediction
,”
Appl. Therm. Eng.
,
77
, pp.
113
120
. 10.1016/j.applthermaleng.2014.12.023
40.
Chang
,
C.-W.
, and
Dinh
,
N. T.
,
2018
, “
Classification of Machine Learning Frameworks for Data-Driven Thermal Fluid Models
,”
Int. J. Therm. Sci.
,
135
, pp.
559
579
. 10.1016/j.ijthermalsci.2018.09.002
41.
Nafey
,
A. S.
,
2009
, “
Neural Network Based Correlation for Critical Heat Flux in Steam-Water Flows in Pipes
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2264
2270
. 10.1016/j.ijthermalsci.2009.04.010
42.
Zhao
,
N.
,
Li
,
S.
, and
Yang
,
J.
,
2016
, “
A Review on Nanofluids: Data-Driven Modeling of Thermalphysical Properties and the Application in Automotive Radiator
,”
Renew. Sustain. Energy Rev.
,
66
, pp.
596
616
. 10.1016/j.rser.2016.08.029
43.
Longo
,
G. A.
,
Zilio
,
C.
,
Ceseracciu
,
E.
, and
Reggiani
,
M.
,
2012
, “
Application of Artificial Neural Network (ANN) for the Prediction of Thermal Conductivity of Oxide-Water Nanofluids
,”
Nano Energy
,
1
(
2
), pp.
290
296
. 10.1016/j.nanoen.2011.11.007
44.
Ebrahimi-Moghadam
,
A.
,
Mohseni-Gharyehsafa
,
B.
, and
Farzaneh-Gord
,
M.
,
2018
, “
Using Artificial Neural Network and Quadratic Algorithm for Minimizing Entropy Generation of Al2O3-EG/W Nanofluid Flow Inside Parabolic Trough Solar Collector
,”
Renew. Energy
,
129
, pp.
473
485
. 10.1016/j.renene.2018.06.023
45.
Bejan
,
A.
,
1996
, “
Method of Entropy Generation Minimization, or Modeling and Optimization Based on Combined Heat Transfer and Thermodynamics
,”
Rev. Générale Therm.
,
35
(
418–419
), pp.
637
646
. 10.1016/S0035-3159(96)80059-6
46.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2015
, “
Thermodynamic Optimisation of the Performance of a Parabolic Trough Receiver Using Synthetic oil–Al2O3 Nanofluid
,”
Appl. Energy
,
156
, pp.
398
412
. 10.1016/j.apenergy.2015.07.035
47.
Padilla
,
R. V.
,
Demirkaya
,
G.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2011
, “
Heat Transfer Analysis of Parabolic Trough Solar Receiver
,”
Appl. Energy
,
88
(
12
), pp.
5097
5110
. 10.1016/j.apenergy.2011.07.012
48.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
. 10.1016/j.pecs.2004.02.001
49.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes Solar Engineering
, vol. 4,
John Wiley & Sons, Inc
,
New York
.
50.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
. 10.1115/1.3687092
51.
Okonkwo
,
E. C.
,
Essien
,
E. A.
,
Akhayere
,
E.
,
Abid
,
M.
,
Kavaz
,
D.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Thermal Performance Analysis of a Parabolic Trough Collector Using Water-Based Green-Synthesized Nanofluids
,”
Sol. Energy
,
170
, pp.
658
670
. 10.1016/j.solener.2018.06.012
52.
Awad
,
M. M.
,
2016
, “
The Science and the History of the Two Bejan Numbers
,”
Int. J. Heat Mass Transf.
,
96
, pp.
101
103
. 10.1016/j.ijheatmasstransfer.2015.11.073
53.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Parametric Investigation of Nanofluids in Parabolic Trough Collectors
,”
Therm. Sci. Eng. Prog. 2
,
127
, pp.
736
747
. 10.1016/j.applthermaleng.2017.08.032
54.
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Thermal-Hydraulic Characteristics and Exergy Performance in Tube-on-Sheet Flat Plate Solar Collectors: Effects of Nanofluids and Mixed Convection
,”
Int. J. Therm. Sci.
,
118
, pp.
397
409
. 10.1016/j.ijthermalsci.2017.05.004
55.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4410
4428
. 10.1016/j.ijheatmasstransfer.2011.04.048
56.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), p.
97
. 10.1017/S0022112077001062
57.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
. 10.1016/j.apenergy.2017.02.064
58.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
59.
Yang
,
F.
,
Cho
,
H.
,
Zhang
,
H.
,
Zhang
,
J.
, and
Wu
,
Y.
,
2018
, “
Artificial Neural Network (ANN) Based Prediction and Optimization of an Organic Rankine Cycle (ORC) for Diesel Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
164
, pp.
15
26
. 10.1016/j.enconman.2018.02.062
60.
Petela
,
R.
,
2010
,
Engineering Thermodynamics of Thermal Radiation for Solar Power Utilization
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.