Abstract

As conduction, convection, and radiation are fundamental modes of heat emitter and transfer, this paper looks at the influences of temperature-dependent thermal conductivity and thermal radiation on peristaltic flow of pseudoplastic nanofluids in an inclined non-uniform asymmetric channel. Inclined magnetic field is taken into consideration. As the Wiedemann–Franz law in metals, electrical conductivity has identical behavior as that of thermal conductivity; as freely animated evenness, electrons transfer not only electric current but also heat energy. Consequently, electrical conductivity should be depending on the temperature of nanoparticles. The related equations of momentum, mass, and concentration are reformulated using lubrication approximations (i.e., tiny or zero Reynolds number and long wavelength). The resulting system of nonlinear equations is solved semi-numerically with the aid of the parametric ND solve package using mathematica version 11. Results of velocity, temperature, and concentration distributions are obtained in the analytical three-dimensional forms. The streamline graphs are offered in the terminus, which elucidate the trapping bolus phenomenon. As a special case, a comparison is made and signified with the recently published results by Hayat et al. (2016, Soret and Dufour Effects in MHD Peristalsis of Pseudoplastic Nanofluid With Chemical Reaction,” J. Mol. Liq., 220, pp. 693–706). It's found that, the increases in thermal conductivity and electrical conductivity cause an increase in the temperature of nanofluid and the heat transfer rate gets induced so a better absorption of solar energy is gained.

References

1.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Mostafa
,
M. E.
,
Essa
,
F. A.
, and
Ali
,
M. K. A.
,
2018
, “
Applications of Nanofluids in Solar Energy: A Review of Recent Advances
,”
Renewable Sustainable Energy Rev.
,
82
(
1
), pp.
3483
3502
.
2.
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
A Review on the Applications of Nanofluids in Solar Energy Field
,”
Renewable Energy
,
123
(
1
), pp.
398
406
.
3.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspension of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
4.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
5.
Nagarajan
,
P. K.
,
Subramani
,
J.
,
Suyambazhahan
,
S.
, and
Sathyamurthy
,
R.
,
2004
, “
Nanofluids for Solar Collector Applications: A Review
,”
Energy Proc.
,
61
(
1
), pp.
2416
2434
.
6.
Sagadevan
,
S.
,
2015
, “
A Review on Role of Nanofluids for Solar Energy Applications
,”
Am. J. Nano Res. Appl.
,
3
(
3
), pp.
53
61
.
7.
Mahian
,
O.
,
Kianifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.
8.
Bozorgan
,
N.
, and
Shafahi
,
M.
,
2015
, “
Performance Evaluation of Nanofluids in Solar Energy: A Review of the Recent Literature
,”
Micro and Nano Syst. Lett.
,
3
(
1
), p.
5
.
9.
Latham
,
T. W.
,
1966
, “
Fluid Motions in Peristaltic Pump
,” M.S. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
10.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S. L.
,
1969
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
,
37
(
4
), pp.
799
825
.
11.
Umavathi
,
J. C.
,
Kumar
,
J. P.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2005
, “
Mixed Convection in a Vertical Porous Channel
,”
Trans. Porous Media
,
61
(
3
), pp.
315
335
.
12.
Chamkha
,
A. J.
,
2000
, “
Unsteady Laminar Hydromagnetic Fluid–Particle Flow and Heat Transfer in Channels and Circular Pipes
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
740
746
.
13.
Chamkha
,
A. J.
,
2002
, “
On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel With Symmetric and Asymmetric Wall Heating Conditions
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2509
2525
.
14.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
A.
,
2005
, “
Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transfer
,
42
(
2
), pp.
81
90
.
15.
Chamkha
,
A. J.
,
1994
, “
Unsteady Flow of a Dusty Conducting Fluid Through a Pipe
,”
Mech. Res. Commun.
,
21
(
3
), pp.
281
288
.
16.
Chamkha
,
A. J.
,
1997
, “
Non-Darcy Fully Developed Mixed Convection in a Porous Medium Channel With Heat Generation/Absorption and Hydromagnetic Effects
,”
J. Num. Heat Transfer
,
32
(
6
), pp.
653
675
.
17.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
A.
,
2009
, “
Unsteady Oscillatory Flow and Heat Transfer in a Horizontal Composite Porous Medium Channel
,”
Nonlin. Anal.: Model. Control
,
14
(
3
), pp.
397
415
.
18.
Chamkha
,
A. J.
,
2001
, “
Unsteady Laminar Hydromagnetic Flow and Heat Transfer in Porous Channels With Temperature-Dependent Properties
,”
Int. J. Numer. Methods Heat Fluid Flow
,
11
(
5
), pp.
430
448
.
19.
Takhar
,
H. S.
,
Chamkha
,
A. J.
, and
Nath
,
G.
,
1999
, “
Unsteady Flow and Heat Transfer on a Semi-Infinite Flat Plate With an Aligned Magnetic Field
,”
Int. J. Eng. Sci.
,
37
(
13
), pp.
1723
1736
.
20.
Chamkha
,
A. J.
, and
Al-subaie
,
M. A.
,
2009
, “
Hydromagnetic Buoyancy-Induced Flow of a Particulate Suspension Through a Vertical Pipe With Heat Generation or Absorption Effects
,”
Turkish J. Eng. Environ. Sci.
,
33
(
1
), pp.
127
134
.
21.
Umavathi
,
J. C.
, and
Chamkha
,
A. J.
,
2003
, “
Fully Developed Mixed Convection of a Micropolar Fluid in a Vertical Channel
,”
Int. J. Fluid Mech. Res.
,
30
(
3
), pp.
251
263
.
22.
Chamkha
,
A. J.
, and
Grosan
,
T.
,
2002
, “
Fully Developed Free Convection of a Micropolar Fluid in a Vertical Channel
,”
Int. Commun. Heat Mass Transfer
,
29
(
8
), pp.
1119
1127
.
23.
Kumara
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Pop
,
L.
,
2010
, “
Fully-Developed Free-Convective Flow of Micropolar and Viscous Fluids in a Vertical Channel
,”
Appl. Math. Model.
,
34
(
5
), pp.
1175
1186
.
24.
Chamkha
,
A. J.
, and
Khaled
,
A. A.
,
2000
, “
Hydromagnetic Combined Heat and Mass Transfer by Natural Convection From a Permeable Surface Embedded in a Fluid-Saturated Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
5
), pp.
455
477
.
25.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Sridhar
,
K. S. R.
,
2010
, “
Generalized Plain Couette Flow and Heat Transfer in a Composite Channel
,”
Trans. Porous Media
,
85
(
1
), pp.
157
169
.
26.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluid With Nanoparticles Developments and Applications of Non-Newtonian Flow
,”
ASME Fluids Eng. Div.
,
66
(
1
), pp.
99
105
.
27.
Bait
,
O.
, and
Si–Ameur
,
M.
,
2018
, “
Enhanced Heat and Mass Transfer in Solar Stills Using Nanofluids: A Review
,”
Sol. Energy
,
170
(
1
), pp.
694
722
.
28.
Noreen
,
S.
,
2018
, “
Peristaltically Assisted Nanofluid Transport in an Asymmetric Channel
,”
Karbala Int. J. Mod. Sci.
,
4
(
1
), pp.
35
49
.
29.
Hayat
,
T.
,
Abbasi
,
F. M.
, and
Ahmad
,
B.
,
2015
, “
Numerical Study for Transport of Water Based Nanofluids Through an Asymmetric Channel With Wavy Walls
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
8
), pp.
1868
1885
.
30.
Abbasi
,
F. M.
,
Hayat
,
T.
, and
Ahmad
,
B.
,
2015
, “
Peristalsis of Silver-Water Nanofluid in the Presence of Hall and Ohmic Heating Effects: Applications in Drug Delivery
,”
J. Mol. Liq.
,
207
(
1
), pp.
248
255
.
31.
Hasona
,
W. M.
,
El-Shekhipy
,
A. A.
, and
Ibrahim
,
M. G.
,
2018
, “
Combined Effects of Magnetohydrodynamic and Temperature Dependent Viscosity on Peristaltic Flow of Jeffrey Nanofluid Through a Porous Medium: Applications to Oil Refinement
,”
Int. J. Heat Mass Transfer
,
126
(
2
), pp.
700
714
.
32.
Hayat
,
T.
,
Nisar
,
Z.
,
Ahmad
,
B.
, and
Yasmin
,
H.
,
2015
, “
Simultaneous Effects of Slip and Wall Properties on MHD Peristaltic Motion of Nanofluid With Joule Heating
,”
J. Magn. Magn. Mater.
,
395
(
1
), pp.
48
58
.
33.
Hayat
,
T.
,
Shafiqua
,
M.
,
Tanveer
,
A.
, and
Alsaedi
,
A.
,
2016
, “
Magnetohydrodynamic Effects on Peristaltic Flow of Hyperbolic Tangent Nanofluid With Slip Conditions and Joule Heating in an Inclined Channel
,”
Int. J. Heat Mass Transfer
,
102
(
1
), pp.
54
63
.
34.
Akram
,
S.
, and
Nadeem
,
S.
,
2014
, “
Consequence of Nanofluid on Peristaltic Transport of a Hyperbolic Tangent Fluid Model in the Occurrence of apt Magnetic Field
,”
J. Magn. Magn. Mater.
,
358–359
(
1
), pp.
183
191
.
35.
Mosayebidorcheh
,
S.
, and
Hatami
,
M.
,
2018
, “
Analytical Investigation of Peristaltic Nanofluid Flow and Heat Transfer in an Asymmetric Wavy Wall Channel
,”
Int. J. Heat Mass Transfer
,
126
(
1
), pp.
790
799
.
36.
Helmy
,
K. A.
,
1995
, “
MHD Boundary Layer Equations for Power-Law Fluids With Variable Electric Conductivity
,”
Meccanica
,
30
(
2
), pp.
187
200
.
37.
Hayashi
,
M.
,
2004
, “
Temperature Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion
,”
Environ. Monit. Assess.
,
96
(
1–3
), pp.
119
128
.
38.
Sorensen
,
J. A.
, and
Glass
,
G. E.
,
1987
, “
Ion and Temperature Dependence of Electrical Conductance for Natural Waters
,”
Anal. Chem.
,
59
(
13
), pp.
1594
1597
.
39.
Prakash
,
J.
,
Sharma
,
A.
, and
Tripathi
,
D.
,
2018
, “
Thermal Radiation Effects on Electroosmosis Modulated Peristaltic Transport of Ionic Nanoliquids in Biomicrofluidics Channel
,”
J. Mol. Liq.
,
249
(
1
), pp.
843
855
.
40.
Bhatti
,
M. M.
,
Zeeshan
,
A.
,
Ijaz
,
N.
,
Anwar Beg
,
O.
, and
Kadir
,
A.
,
2016
, “
Mathematical Modelling of Nonlinear Thermal Radiation Effects on EMHD Peristaltic Pumping of Viscoelastic Dusty Fluid Through a Porous Medium Duct
,”
Eng. Sci. Technol.
,
20
(
3
), pp.
1129
1139
.
41.
Hayat
,
T.
,
Iqbal
,
R.
,
Tanveer
,
A.
, and
Alsaedi
,
A.
,
2016
, “
Soret and Dufour Effects in MHD Peristalsis of Pseudoplastic Nanofluid With Chemical Reaction
,”
J. Mol. Liq.
,
220
(
1
), pp.
693
706
.
42.
Hayat
,
T.
,
Iqbal
,
R.
,
Tanveer
,
A.
, and
Alsaedi
,
A.
,
2016
, “
Influence of Convective Conditions in Radiative Peristaltic Flow of Pseudoplastic Nanofluid in a Tapered Asymmetric Channel
,”
J. Magn. Magn. Mater.
,
408
(
1
), pp.
168
176
.
43.
Hina
,
S.
,
Mustafa
,
M.
,
Hayat
,
T.
, and
Alotaibid
,
N. D.
,
2015
, “
On Peristaltic Motion of Pseudoplastic Fluid in a Curved Channel With Heat/Mass Transfer and Wall Properties
,”
Appl. Math. Comput.
,
263
(
1
), pp.
378
391
.
44.
Hayat
,
T.
,
Tanveer
,
A.
,
Alsaadi
,
F.
, and
Mousa
,
G.
,
2016
, “
Impact of Radial Magnetic Field on Peristalsis in Curved Channel With Convective Boundary Conditions
,”
J. Magn. Magn. Mater.
,
403
(
1
), pp.
47
59
.
45.
Das
,
S.
,
Banu
,
A. S.
,
Jana
,
R. N.
, and
Makinde
,
O. D.
,
2015
, “
Entropy Analysis on MHD Pseudo-Plastic Nanofluid Flow Through a Vertical Porous Channel With Convective Heating
,”
Alexandria Eng. J.
,
54
(
3
), pp.
325
337
.
46.
Mekheimer
,
K. S.
, and
Abd elmaboud
,
Y.
,
2014
, “
Simultaneous Effects of Variable Viscosity and Thermal Conductivity on Peristaltic Flow in a Vertical Asymmetric Channel
,”
Can. J. Phys.
,
92
(
12
), pp.
1541
1555
.
You do not currently have access to this content.