This study presents a novel performance evaluation of the commercially available LS-2 collector operating with an oil-based olive leaf-synthesized nanofluid. The nanoparticles were synthesized experimentally from olive leaf extracts (OLEs): OLE-ZVI and OLE-TiO2. The thermophysical properties of the nanoparticles were then added to Syltherm-800 thermal oil, and its performance on the parabolic trough solar collector (PTC) was evaluated numerically. The PTC under study was modeled on the engineering equation solver (EES) and validated thermally with results found in the literature. The synthesized nanoparticles were also found to possess anticorrosion properties, nontoxic, and less expensive to produce when compared to commercially available ones. The use of the nanofluids (Syltherm-800/OLE-ZVI and Syltherm-800/OLE-TiO2) was evaluated against the parameters of thermal and exergetic efficiencies, heat transfer coefficient, thermal losses, and pressure drop. The study shows that an enhancement in thermal performance of 0.51% and 0.48% was achieved by using Syltherm-800/OLE-ZVI and Syltherm-800/OLE-TiO2 nanofluids, respectively. A heat transfer coefficient enhancement of 42.9% and 51.2% was also observed for Syltherm-800/OLE-TiO2 and Syltherm-800/OLE-ZVI nanofluids, respectively. Also, a mean variation in pressure drop of 11.5% was observed by using the nanofluids at a nanoparticle volumetric concentration of 3%. A comparison of the results of this study with related literature shows that the proposed nanofluids outperform those found in literature.

References

1.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes Solar Engineering
,
Wiley
,
Chicago, IL
.
2.
Hernández-Román
,
M. Á.
,
Manzano-Ramírez
,
A.
,
Pineda-Piñón
,
J.
, and
Ortega-Moody
,
J.
,
2014
, “
Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector
,”
Entropy
,
16
(
8
), pp.
4612
4625
.
3.
Ratlamwala
,
T. A.
, and
Abid
,
M.
,
2018
, “
Performance Analysis of Solar Assisted Multi-Effect Absorption Cooling Systems Using Nanofluids: A Comparative Analysis
,”
Int. J. Energy Res.
,
42
(
9
), pp.
2901
2915
.
4.
Xiao
,
G.
,
Wang
,
X.
,
Ni
,
M.
,
Wang
,
F.
,
Zhu
,
W.
,
Luo
,
Z.
, and
Cen
,
K.
,
2013
, “
A Review on Solar Stills for Brine Desalination
,”
Appl. Energy
,
103
, pp.
642
652
.
5.
Al-Sulaiman
,
F. A.
,
Hamdullahpur
,
F.
, and
Dincer
,
I.
,
2012
, “
Performance Assessment of a Novel System Using Parabolic Trough Solar Collectors for Combined Cooling, Heating, and Power Production
,”
Renewable Energy
,
48
, pp.
161
172
.
6.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051009
.
7.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Effects of Synthetic Oil Nanofluids and Absorber Geometries on the Exergetic Performance of the Parabolic Trough Collector
,”
Int. J. Energy Res.
,
42
(
11
), pp.
3559
3574
.
8.
Singh
,
R. N.
,
Singhal
,
A. K.
,
Mathur
,
S. S.
, and
Kandpal
,
T. C.
,
1982
, “
Performance of a Cylindrical Parabolic Trough Using a Fin Receiver: Limb Darkening Effects
,”
Int. J. Energy Res.
,
6
(
3
), pp.
271
282
.
9.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Multi-Criteria Evaluation of Parabolic Trough Collector With Internally Finned Absorbers
,”
Appl. Energy
,
205
, pp.
540
561
.
10.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
(
2016
), pp.
125
141
.
11.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
R. A.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND-94-1884
.http://large.stanford.edu/publications/coal/references/troughnet/solarfield/docs/segs_ls2_solar_collector.pdf
12.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No.
NREL/TP-550-34169
.http://fac.ksu.edu.sa/sites/default/files/34169.pdf
13.
Chen
,
L.
,
Chen
,
J.-X.
, and
Zhang
,
X.-R.
,
2015
, “
Numerical Simulation on the Optical and Thermal Performance of a Modified Integrated Compound Parabolic Solar Concentrator
,”
Int. J. Energy Res.
,
39
(
13
), pp.
1843
1857
.
14.
Mohamad
,
A.
,
Orfi
,
J.
, and
Alansary
,
H.
,
2014
, “
Heat Losses From Parabolic Trough Solar Collectors
,”
Int. J. Energy Res.
,
38
(
1
), pp.
20
28
.
15.
Sivaram
,
P. M.
,
Nallusamy
,
N.
, and
Suresh
,
M.
,
2016
, “
Experimental and Numerical Investigation on Solar Parabolic Trough Collector Integrated With Thermal Energy Storage Unit
,”
Int. J. Energy Res.
,
40
(
11
), pp.
1564
1575
.
16.
Hemmat
,
M.
, and
Seyfolah
,
E.
,
2015
, “
An Experimental Study on the Effect of Diameter on Thermal Conductivity and Dynamic Viscosity of Fe/Water Nanofluids
,”
J. Therm. Anal. Calorim.
,
119
(
3
), pp.
1817
1824
.
17.
Hemmat Esfe
,
M.
,
Abbasian Arani
,
A. A.
,
Rezaie
,
M.
,
Yan
,
W. M.
, and
Karimipour
,
A.
,
2015
, “
Experimental Determination of Thermal Conductivity and Dynamic Viscosity of Ag-MgO/Water Hybrid Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
189
195
.
18.
Hemmat Esfe
,
M.
,
Karimipour
,
A.
,
Yan
,
W.-M.
,
Akbari
,
M.
,
Safaei
,
M. R.
, and
Dahari
,
M.
,
2015
, “
Experimental Study on Thermal Conductivity of Ethylene Glycol Based Nanofluids Containing Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
88
, pp.
728
734
.
19.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041004
.
20.
Loni
,
R.
,
Asli-ardeh
,
E. A.
,
Ghobadian
,
B.
,
Kasaeian
,
A. B.
, and
Gorjian
,
S.
,
2017
, “
Thermodynamic Analysis of a Solar Dish Receiver Using Different Nanofluids
,”
Energy
,
133
(
2017
), pp.
749
760
.
21.
Hussein
,
A. K.
,
2016
, “
Applications of Nanotechnology to Improve the Performance of Solar Collectors—Recent Advances and Overview
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
767
790
.
22.
Sukarno
,
D. H.
,
2017
, “
Challenges for Nanofluid Applications in Heat Transfer Technology
,”
J. Phys.: Conf. Ser.
,
795
(
1
), p.
012020
.
23.
Wang
,
Y.
,
Xu
,
J.
,
Liu
,
Q.
,
Chen
,
Y.
, and
Liu
,
H.
,
2016
, “
Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/Synthetic Oil Nanofluid
,”
Appl. Therm. Eng.
,
107
, pp.
469
478
.
24.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Thermal Analysis of Parabolic Trough Collector Operating With Mono and Hybrid Nanofluids
,”
Sustainable Energy Technol. Assess.
,
26
, pp.
105
115
.
25.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2015
, “
Thermodynamic Optimisation of the Performance of a Parabolic Trough Receiver Using Synthetic Oil–Al2O3 Nanofluid
,”
Appl. Energy
,
156
(
2015
), pp.
398
412
.
26.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
27.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.http://adsabs.harvard.edu/abs/1975STIA...7522028G
28.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2015
, “
Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO2/Water Nanofluids: Effects of Nanoparticle Size and pH
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061011
.
29.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol®VP-1 Nanofluid
,”
Energy Convers. Manage.
,
120
, pp.
449
465
.
30.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Parametric Investigation of Nanofluids in Parabolic Trough Collectors
,”
Therm. Sci. Eng. Prog.
127
, pp.
736
747
.
31.
Sokhansefat
,
T.
,
Kasaeian
,
A. B.
, and
Kowsary
,
F.
,
2014
, “
Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/Synthetic Oil Nanofluid
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
636
644
.
32.
Essien
,
E. A.
,
Kavaz
,
D.
,
Ituen
,
E. B.
, and
Umoren
,
S. A.
,
2018
, “
Synthesis, Characterization and Anticorrosion Property of Olive Leaves Extract-Titanium Nanoparticles Composite
,”
J. Adhes. Sci. Technol.
,
32
(
16
), pp.
1773
1794
.
33.
Sundrarajan
,
M.
, and
Gowri
,
S.
,
2011
, “
Green Synthesis of Titanium Dioxide Nanoparticles by Nyctanthes Arbor-Tristis Leaves Extract
,”
Chalcogenide Lett.
,
8
(
8
), pp.
447
451
.http://www.chalcogen.ro/447_Sundrarajan.pdf
34.
Hanaor
,
D.
,
Michelazzi
,
M.
,
Leonelli
,
C.
, and
Sorrell
,
C. C.
,
2012
, “
The Effects of Carboxylic Acids on the Aqueous Dispersion and Electrophoretic Deposition of ZrO2
,”
J. Eur. Ceram. Soc.
,
32
(
1
), pp.
235
244
.
35.
Choudhary
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al2O3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
.
36.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manage.
,
106
(
2015
), pp.
268
281
.
37.
Okonkwo
,
E. C.
,
Essien
,
E. A.
,
Akhayere
,
E.
,
Abid
,
M.
,
Kavaz
,
D.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Thermal Performance Analysis of a Parabolic Trough Collector Using Water-Based Green-Synthesized Nanofluids
,”
Sol. Energy
,
170
(
2018
), pp.
658
670
.
38.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Comparative Study of Heat Transfer Enhancement in Parabolic Trough Collector Based on Modified Absorber Geometry
,”
ASCE J. Energy Eng.
,
145
(
3
), pp.
1
16
.
39.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.
40.
Abid
,
M.
,
Ratlamwala
,
T. A. H.
, and
Atikol
,
U.
,
2017
, “
Solar Assisted Multi-Generation System Using Nanofluids: A Comparative Analysis
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21429
21442
.
41.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.
42.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), p.
97
.
43.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
.
44.
Okonkwo
,
E. C.
,
Abid
,
M.
,
Ratlamwala
,
T. A. H.
,
Abbasoglu
,
S.
, and
Dagbasi
,
M.
,
2018
, “
Optimal Analysis of Entropy Generation and Heat Transfer in Parabolic Trough Collector Using Green-Synthesized TiO2/Water Nanofluids
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p. 031011.
45.
Wcislik
,
S.
,
2017
, “
A Simple Economic and Heat Transfer Analysis of the Nanoparticles Use
,”
Chem. Pap.
,
71
(
12
), pp.
2395
2401
.
46.
Subramani
,
J.
,
Nagarajan
,
P. K.
,
Mahian
,
O.
, and
Sathyamurthy
,
R.
,
2018
, “
Efficiency and Heat Transfer Improvements in a Parabolic Trough Solar Collector Using TiO2 Nanofluids Under Turbulent Flow Regime
,”
Renewable Energy
,
119
(
2018
), pp.
19
31
.
47.
Minea
,
A. A.
, and
El-Maghlany
,
W. M.
,
2018
, “
Influence of Hybrid Nanofluids on the Performance of Parabolic Trough Collectors in Solar Thermal Systems: Recent Findings and Numerical Comparison
,”
Renewable Energy
,
120
, pp.
350
364
.
You do not currently have access to this content.