In this paper, experimental investigations were carried out to observe the melting process of a bio-based nano-phase change materials (PCM) inside open-cell metal foams. Copper oxide nanoparticles with five different weight fractions (i.e., 0.00%, 0.08%, 0.10%, 0.12%, and 0.30%) were dispersed into bio-based PCM (i.e., coconut oil) to synthesize nano-PCMs. Open-cell aluminum foams of different porosities (i.e., 0.96, 0.92, and 0.88) and pore densities (i.e., 5, 10, and 20 pores per inch (PPI)) were considered. An experimental setup was constructed to monitor the progression of the melting process and to measure transient temperatures variations at different selected locations. Average thermal energy storage rate (TESR) was calculated, alongside the melting time was recorded. The effects of various nanoparticles concentration, metal foam pore densities, porosities, and isothermal surface temperature on the melting time, TESR, thermal energy distribution, and the melting behavior were studied. It was observed that the melting time significantly reduced by using metal foam and increasing the isothermal surface temperature. It was concluded that the effect of adding nanoparticles on the TESR depends on the characteristics of metal foam, as well as, the weight fractions of nanoparticles. The change in TESR varied from −1% to 8.6% upon addition of 0.10 wt % nanoparticles compared to pure PCM, whereas the increase in the nanoparticles concentration from 0.10% to 0.30% changed TESR by −10.6% to 4.5%. The results provide an insight into the interdependencies of parameters such as pore density and porosity of metal foam and nanoparticles concentration on the melting process of nano-PCM in metal foam.

References

1.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review of Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
2.
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2015
, “
Experimental and Numerical Evaluation of Longitudinally Finned Latent Heat Thermal Storage Systems
,”
Energy Build.
,
99
, pp.
263
272
.
3.
Liu
,
C.
, and
Groulx
,
D.
,
2014
, “
Experimental Study of the Phase Change Heat Transfer Inside a Horizontal Cylindrical Latent Heat Energy Storage System
,”
Int. J. Therm. Sci.
,
82
, pp.
100
110
.
4.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2014
, “
Experimental Study of Melting and Solidification of PCM in a Triplex Tube Heat Exchanger With Fins
,”
Energy Build.
,
68
, pp.
33
41
.
5.
Murray
,
R. E.
, and
Groulx
,
D.
,
2014
, “
Experimental Study of the Phase Change and Energy Characteristics Inside a Cylindrical Latent Heat Energy Storage System—Part 1: Consecutive Charging and Discharging
,”
Renewable Energy
,
62
, pp.
571
581
.
6.
Sciacovelli
,
A.
,
Gagliardi
,
F.
, and
Verda
,
V.
,
2015
, “
Maximization of Performance of a PCM Latent Heat Storage System With Innovative Fins
,”
Appl. Energy
,
137
, pp.
707
715
.
7.
Rozenfeld
,
A.
,
Kozak
,
Y.
,
Rozenfeld
,
T.
, and
Ziskind
,
G.
,
2017
, “
Experimental Demonstration, Modeling and Analysis of a Novel Latent-Heat Thermal Energy Storage Unit With a Helical Fin
,”
Int. J. Heat Mass Transfer
,
110
, pp.
692
709
.
8.
Soupart
,
A. C.
,
Fourmigué
,
J. F.
,
Marty
,
P.
, and
Couturier
,
R.
,
2016
, “
Performance Analysis of Thermal Energy Storage Systems Using Phase Change Material
,”
Appl. Therm. Eng.
,
98
, pp.
1286
1296
.
9.
Kuboth
,
S.
,
König-Haagen
,
A.
, and
Brüggemann
,
D.
,
2017
, “
Numerical Analysis of Shell and Tube Type Latent Thermal Energy Storage Performance With Different Arrangements of Circular Fins
,”
Energies
,
10
(
3
), p.
274
.
10.
Yanping
,
Y.
,
Cao
,
X.
,
Xiang
,
B.
, and
Du
,
Y.
,
2016
, “
Effect of Installation Angle of Fins on Melting Characteristics of Annular Unit for Latent Heat Thermal Energy Storage
,”
Sol. Energy
,
136
, pp.
365
378
.
11.
Rahimi
,
M.
,
Ranjbar
,
A. A.
,
Ganji
,
D. D.
,
Sedighi
,
K.
,
Hosseini
,
M. J.
, and
Bahrampoury
,
R.
,
2014
, “
Analysis of Geometrical and Operational Parameters of PCM in a Fin and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
109
115
.
12.
Medrano
,
M.
,
Yilmaz
,
M. O.
,
Nogués
,
M.
,
Martorell
,
I.
,
Roca
,
J.
, and
Cabeza
,
L. F.
,
2009
, “
Experimental Evaluation of Commercial Heat Exchangers for Use as PCM Thermal Storage Systems
,”
Appl. Energy
,
86
(
10
), pp.
2047
2055
.
13.
Mancin
,
S.
,
Diani
,
A.
,
Doretti
,
L.
,
Hooman
,
K.
, and
Rossetto
,
L.
,
2015
, “
Experimental Analysis of Phase Change Phenomenon of Paraffin Waxes Impregnated in Copper Foams
,”
Int. J. Therm. Sci.
,
90
, pp.
79
89
.
14.
Li
,
W.
,
Wan
,
H.
,
Lou
,
H.
,
Fu
,
Y.
,
Qin
,
F.
, and
He
,
G.
,
2017
, “
Enhanced Thermal Management With Microencapsulated Phase Change Material Particles Infiltrated in Cellular Metal Foam
,”
Energy
,
127
, pp.
671
679
.
15.
Zhang
,
P.
,
Meng
,
Z. N.
,
Zhu
,
H.
,
Wang
,
Y. L.
, and
Peng
,
S. P.
,
2017
, “
Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam
,”
Appl. Energy
,
185
, pp.
1971
1983
.
16.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Impregnated Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
.
17.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2011
, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Impregnated in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
.
18.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.
19.
Meng
,
Z. N.
, and
Zhang
,
P.
,
2017
, “
Experimental and Numerical Investigation of a Tube-in-Tank Latent Thermal Energy Storage Unit Using Composite PCM
,”
Appl. Energy
,
190
, pp.
524
539
.
20.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2016
, “
Experimental Study on Enhancement of Thermal Energy Storage With Phase-Change Material
,”
Appl. Energy
,
169
, pp.
164
176
.
21.
Nomura
,
T.
,
Okinaka
,
N.
, and
Akiyama
,
T.
,
2009
, “
Impregnation of Porous Material With Phase Change Material for Thermal Energy Storage
,”
Mater. Chem. Phys.
,
115
(
2–3
), pp.
846
850
.
22.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
(
8
), p.
083549
.
23.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminium Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
24.
Atal
,
A.
,
Wang
,
Y.
,
Harsha
,
M.
, and
Sengupta
,
S.
,
2016
, “
Effect of Porosity of Conducting Matrix on a Phase Change Energy Storage Device
,”
Int. J. Heat Mass Transfer
,
93
, pp.
9
16
.
25.
Yilbas
,
B. S.
,
Shuja
,
S. Z.
, and
Shaukat
,
M. M.
,
2015
, “
Thermal Characteristics of Latent Heat Thermal Storage: Comparison of Aluminum Foam and Mesh Configurations
,”
Numer. Heat Transfer, Part A
,
68
(
1
), pp.
99
116
.
26.
Wang
,
J.
,
Xie
,
H.
,
Xin
,
Z.
,
Li
,
Y.
, and
Chen
,
L.
,
2010
, “
Enhancing Thermal Conductivity of Palmitic Acid Based Phase Change Materials With Carbon Nanotubes as Fillers
,”
Sol. Energy
,
84
(
2
), pp.
339
344
.
27.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1658
1666
.
28.
Sivasankaran
,
H.
,
Orejon
,
D.
,
Takata
,
Y.
, and
Kohno
,
M.
,
2017
, “
Enhanced Thermal Conductivity of Phase Change Nanocomposite in Solid and Liquid State With Various Carbon Nano Inclusions
,”
Appl. Therm. Eng.
,
114
, pp.
1240
1246
.
29.
Das
,
N.
,
Takata
,
Y.
,
Kohno
,
M.
, and
Harish
,
S.
,
2017
, “
Effect of Carbon Nano Inclusion Dimensionality on the Melting of Phase Change Nanocomposites in Vertical Shell-Tube Thermal Energy Storage Unit
,”
Int. J. Heat Mass Transfer
,
113
, pp.
423
431
.
30.
Kant
,
K.
,
Shukla
,
A.
,
Sharma
,
A.
, and
Biwole
,
P. H.
,
2017
, “
Heat Transfer Study of Phase Change Materials With Graphene Nano Particle for Thermal Energy Storage
,”
Sol. Energy
,
146
, pp.
453
463
.
31.
Cui
,
Y.
,
Liu
,
C.
,
Hu
,
S.
, and
Yu
,
X.
,
2011
, “
The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
95
(
4
), pp.
1208
1212
.
32.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of Phase Change Material/Nanoparticles Suspensions in a Square Container Subjected to a Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
66
, pp.
672
683
.
33.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of NePCM Inside an Annular Container Under a Constant Heat Flux Including the Effect of Eccentricity
,”
Int. J. Heat Mass Transfer
,
67
, pp.
455
468
.
34.
Ghalambaz
,
M.
,
Doostani
,
A.
,
Izadpanahi
,
E.
, and
Chamkha
,
A. J.
,
2017
, “
Phase-Change Heat Transfer in a Cavity Heated From Below: The Effect of Utilizing Single or Hybrid Nanoparticles as Additives
,”
J. Taiwan Inst. Chem. Eng.
,
72
, pp.
104
115
.
35.
Sheikholeslami
,
M.
,
Ghasemi
,
A.
,
Li
,
Z.
,
Shafee
,
A.
, and
Saleem
,
S.
,
2018
, “
Influence of CuO Nanoparticles on Heat Transfer Behavior of PCM in Solidification Process Considering Radiative Source Term
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1252
1264
.
36.
Chamkha
,
A. J.
,
Doostanidezfuli
,
A.
,
Izadpanahi
,
E.
, and
Ghalambaz
,
M.
,
2017
, “
Phase-Change Heat Transfer of Single/Hybrid Nanoparticles-Enhanced Phase-Change Materials Over a Heated Horizontal Cylinder Confined in a Square Cavity
,”
Adv. Powder Technol.
,
28
(
2
), pp.
385
397
.
37.
Ghalambaz
,
M.
,
Doostani
,
A.
,
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2017
, “
Melting of Nanoparticles-Enhanced Phase-Change Materials in an Enclosure: Effect of Hybrid Nanoparticles
,”
Int. J. Mech. Sci.
,
134
, pp.
85
97
.
38.
Hossain
,
R.
,
Mahmud
,
S.
,
Dutta
,
A.
, and
Pop
,
I.
,
2015
, “
Energy Storage System Based on Nanoparticle-Enhanced Phase Change Material Inside Porous Medium
,”
Int. J. Therm. Sci.
,
91
, pp.
49
58
.
39.
Tasnim
,
S. H.
,
Hossain
,
R.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2015
, “
Convection Effect on the Melting Process of Nano-PCM Inside Porous Enclosure
,”
Int. J. Heat Mass Transfer
,
85
, pp.
206
220
.
40.
Al-Jethelah
,
M. S. M.
,
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2016
, “
Melting of Nano-Phase Change Material Inside a Porous Enclosure
,”
Int. J. Heat Mass Transfer
,
102
, pp.
773
787
.
41.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Melting Enhancement in Triplex-Tube Latent Heat Energy Storage System Using Nanoparticles-Metal Foam Combination
,”
Appl. Energy
,
191
, pp.
22
34
.
42.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Melting Enhancement in Triplex-Tube Latent Thermal Energy Storage System Using Nanoparticles-Fins Combination
,”
Int. J. Heat Mass Transfer
,
109
, pp.
417
427
.
43.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Solidification Enhancement in a Triplex-Tube Latent Heat Energy Storage System Using Nanoparticles-Metal Foam Combination
,”
Energy
,
126
, pp.
501
512
.
44.
Sheikholeslami
,
M.
,
2018
, “
Numerical Modeling of Nano Enhanced PCM Solidification in an Enclosure With Metallic Fin
,”
J. Mol. Liq.
,
259
, pp.
424
438
.
45.
Al-Jethelah
,
M. A.
,
Ebadi
,
S.
,
Venkateshwar
,
K.
,
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2019
, “
Charging Nanoparticles Enhanced Bio-Based PCM in Open Cell Metallic Foams: An Experimental Investigation
,”
Appl. Therm. Eng.
,
148
, pp.
1029
1042
.
46.
Ghalambaz
,
M.
,
Behseresht
,
A.
,
Behseresht
,
J.
, and
Chamkha
,
A.
,
2015
, “
Effect of Nanoparticles Diameter and Concentration on Natural Convection of the Al2O3-Water Nanofluids Considering Variable Thermal Conductivity Around a Vertical Cone in Porous Media
,”
Adv. Powder Technol.
,
26
(
1
), pp.
224
235
.
47.
Mehryan
,
S. A. M.
,
Kashkooli
,
F. M.
,
Ghalambaz
,
M.
, and
Chamka
,
A. J.
,
2017
, “
Free Convection of Hybrid Al2O3-CuO Water Nanofluid in Differentially Heated Porous Cavity
,”
Adv. Powder Technol.
,
28
, pp.
2295
2305
.
48.
Ghalambaz
,
M.
,
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Free Convection in a Parallelogrammic Porous Cavity Filled With a Nanofluid Using Tiwari and Das Nanofluid Model
,”
PLos One
,
10
(
5
), p.
e0126486
.
You do not currently have access to this content.