In the search for new, more effective coolant fluids, nanoparticle suspensions have shown promise due to their enhanced thermal conductivity. However, there is a concomitant increase in the viscosity, requiring an increase in pumping power to achieve the same flow rate. Studies of flow cooling in simple geometries indicate that there is a benefit to using nanofluids, but it is difficult to justify extending these results to the far more complicated geometries. Moreover, with the variability of property measurements found in literature, it is possible to show conflicting results from the same set of flow-cooling data. In this work we present a self-contained study of the properties and effectiveness of an alumina in water nanofluid. Flow-cooling is studied in an off-the-shelf fluid cooling package for electronics to examine the effects of the particulates in a practical scenario. We measure the thermal conductivity and viscosity of the same suspensions to assure consistent interpretation of our results. We find that, while there is no anomalous enhancement of the thermal properties or transport, there is a benefit to using a low volume fraction alumina nanoparticle suspension over using the base fluid alone. In fact, there is an optimal volume fraction (1%) for this nanofluid and electronics cooling system combination that maximizes the heat dissipated. However, we find that this benefit decreases as the volume fraction, and hence the viscosity, increases. Understanding where the trade-off between viscosity increase and thermal conductivity increase occurs is critical to designing an electronics cooling system using a nanofluid as a coolant.

1.
Semiconductor Industry Association
, 2007, “
The International Technology Roadmap for Semiconductors
,” Accessed August, 2009.
2.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
, 2007, “
Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
1359-4311,
27
(
8–9
), pp.
1501
1506
.
3.
Nnanna
,
A. G. A.
,
Rutherford
,
W.
,
Elomar
,
W.
, and
Sankowski
,
B.
, 2009, “
Assessment of Thermoelectric Module With Nanofluid Heat Exchanger
,”
Appl. Therm. Eng.
1359-4311,
29
(
2–3
), pp.
491
500
.
4.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
(
3
), pp.
187
191
.
5.
Maxwell
,
J. C.
, 1954,
A Treatise on Electricity and Magnetism
, Vols.
1
and 2,
Dover
,
New York
.
6.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
, 2007, “
Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
27
(
1
), pp.
240
249
.
7.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
ASME
,
New York
, pp.
99
105
.
8.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
280
290
.
9.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
10.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
, 2008, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
0021-8979,
103
, p.
074301
.
11.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
567
574
.
12.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
, 2002, “
Dependence of the Thermal Conductivity of Nanoparticle-Fluid Mixture on the Base Fluid
,”
J. Mater. Sci. Lett.
0261-8028,
21
(
19
), pp.
1469
1471
.
13.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
14.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
1–2
), pp.
240
250
.
15.
Enustun
,
B. V.
, and
Turkevich
,
J.
, 1963, “
Coagulation of Colloidal Gold
,”
J. Am. Chem. Soc.
0002-7863,
85
(
21
), pp.
3317
3328
.
16.
Kimling
,
J.
,
Maier
,
M.
,
Okenve
,
B.
,
Kotaidis
,
V.
,
Ballot
,
H.
, and
Plech
,
A.
, 2006, “
Turkevich Method for Gold Nanoparticle Synthesis Revisited
,”
J. Phys. Chem. B
1089-5647,
110
(
32
), pp.
15700
15707
.
17.
Masuda
,
H.
,
Ebata
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Γ-Al2O3, SiO2 and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
0913-946X,
4
(
4
), pp.
227
233
.
18.
Li
,
C. H.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
Peterson
,
G. P.
, 2008, “
Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
130
(
4
), p.
042407
.
19.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
0021-8979,
99
, p.
084314
.
20.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2007, “
The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids
,”
J. Appl. Phys.
0021-8979,
101
, p.
044312
.
21.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2006, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
J. Appl. Phys.
0021-8979,
100
, p.
044325
.
22.
Timofeeva
,
E. V.
,
Gavrilov
,
A. N.
,
McCloskey
,
J. M.
,
Tolmachev
,
Y. V.
,
Sprunt
,
S.
,
Lopatina
,
L. M.
, and
Selinger
,
J. V.
, 2007, “
Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory
,”
Phys. Rev. E
1063-651X,
76
(
6
), p.
061203
.
23.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
24.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
, 2006, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
133108
.
25.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2007, “
Mechanism of Thermal Transport in Dilute Nanocolloids
,”
Phys. Rev. Lett.
0031-9007,
98
(
2
), p.
028302
.
26.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
(
2
), pp.
151
170
.
27.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
130
(
4
), p.
042412
.
28.
Lee
,
J.
,
Flynn
,
R. D.
,
Goodson
,
K. E.
, and
Eaton
,
J. K.
, 2007, “
Convective Heat Transfer of Nanofluids (DI Water-Al2O3) in Microchannels
,”
HT2007, ASME-JSME Thermal Engineering Summer Heat Transfer Conference
, pp.
843
850
.
29.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
, 2005, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersion (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
6
), pp.
1107
1116
.
30.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
24
), pp.
5181
5188
.
31.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
32.
Lai
,
W. Y.
,
Duculescu
,
B.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2006, “
Convective Heat Transfer With Nanofluids in a Single 1.02-mm Tube
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition
, pp.
1240
1244
.
33.
Ding
,
Y.
,
Chen
,
Y.
,
He
,
A.
,
Lapkin
,
A.
,
Yeganeh
,
M.
,
Siller
,
L.
, and
Butenko
,
Y.
, 2007, “
Forced Convective Heat Transfer of Nanofluids
,”
Adv. Powder Technol.
0921-8831,
18
(
6
), pp.
813
824
.
34.
Faulkner
,
D. J.
,
Rector
,
D. R.
,
Davidson
,
J. J.
, and
Shekarriz
,
R.
, 2004, “
Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection
,”
Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition
, pp.
219
224
.
35.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
3–4
), pp.
452
463
.
36.
Chein
,
R.
, and
Chuang
,
J.
, 2007, “
Experimental Microchannel Heat Sink Performance Studies Using Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
46
(
1
), pp.
57
66
.
37.
Valencia
,
G. E.
,
Ramos
,
M. A.
, and
Bula
,
A. J.
, 2007, “
Experimental Evaluation of the Convective Heat Transfer Coefficients in a Nanofluid-Cooled Milli Channels Heat Sink
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition
, pp.
31
37
.
38.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
(
15
), p.
153107
.
39.
Roder
,
H. M.
, 1981, “
A Transient Hot Wire Thermal Conductivity Apparatus for Fluids
,”
J. Res. Natl. Bur. Stand.
0160-1741,
86
(
5
), pp.
457
493
.
40.
de Castro
,
C. A. N.
,
Calado
,
J. C. G.
,
Wakeham
,
W. A.
, and
Dix
,
M.
, 1976, “
An Apparatus to Measure the Thermal Conductivity of Liquids
,”
J. Phys. E
0022-3735,
9
, pp.
1073
1080
.
41.
Franks
,
G. V.
, and
Gan
,
Y.
, 2007, “
Charging Behavior at the Alumina-Water Interface and Implications for Ceramic Processing
,”
J. Am. Ceram. Soc.
0002-7820,
90
(
11
), pp.
3373
3388
.
42.
Donaldson
,
P. E.
, 1993, “
Electric Charge on 96 Percent Alumina in Water
,”
Med. Biol. Eng. Comput.
0140-0118,
31
(
1
), pp.
75
78
.
43.
Larson
,
R. G.
, 1999,
The Structure and Rheology of Complex Fluids
,
Oxford University Press
,
New York
.
44.
White
,
F. M.
, 2003,
Fluid Mechanics
,
McGraw-Hill Higher Education
,
New York
, p.
810
.
45.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
, 2009, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
48
(
2
), pp.
363
371
.
46.
Peñas
,
J. R. V.
,
de Zárate
,
J. M. O.
, and
Khayet
,
M.
, 2008, “
Measurement of the Thermal Conductivity of Nanofluids by the Multicurrent Hot-Wire Method
,”
J. Appl. Phys.
0021-8979,
104
, p.
044314
.
47.
DeWitt
,
D. P.
, and
Incropera
,
F. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
48.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L.
, and
Buongiorno
,
J.
, 2009, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
7–8
), pp.
2042
2048
.
You do not currently have access to this content.