Impinging jets are commonly used to enhance heat transfer in modern gas turbine engines. Impinging jets used in turbine blade cooling typically operate at lower Reynolds numbers in the range of 10,000–20,000. In combustor liner cooling, the Reynolds numbers of the jets can be as high as 60,000. The present study is aimed at experimentally testing two different styles of jet impingement geometries to be used in backside combustor cooling. The higher jet Reynolds numbers lead to increased overall heat transfer characteristics, but also an increase in crossflow caused by spent air. The crossflow air has the effect of rapidly degrading the downstream jets at high jet Reynolds numbers. In an effort to increase the efficiency of the coolant air, configurations designed to reduce the harmful effects of crossflow are studied. Two main designs, a corrugated wall and extended port, are tested. Local heat transfer coefficients are obtained for each test section through a transient liquid crystal technique. Results show that both geometries reduce the crossflow induced degradation on downstream jets, but different geometries perform better at different Reynolds numbers. The extended port and corrugated wall configurations show similar benefits at the high Reynolds numbers, but at low Reynolds numbers, the extended port design increases the overall level of heat transfer. This is attributed to the developed jet velocity profile at the tube exit. The best possible explanation is that the benefit of the developed jet velocity profile diminishes as jet velocities rise and the air has lesser time to develop prior to exiting.

1.
Dano
,
B. P. E.
,
Liburdy
,
J. A.
, and
Kanokjaruvijit
,
K.
, 2005, “
Flow Characteristics and Heat Transfer Performance of a Semi-Confined Impinging Array of Jets: Effect of Nozzle Geometry
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
691
701
.
2.
San
,
J. Y.
, and
Lai
,
M. D.
, 2001, “
Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3997
4007
.
3.
Cheong
,
C. Y.
,
Ireland
,
P. T.
, and
Ashforth-Frost
,
S.
, 2005, “
Flow and Heat Transfer Characteristics of an Impinging Jet in Crossflow at Low Nozzle-to-Target Spacings: Part I
,”
Proceedings of the ASME Turbo Expo
, Reno, NV.
4.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distribution for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
337
342
.
5.
Kercher
,
D. M.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
73
82
.
6.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
Proceedings of the ASME Turbo Expo
, Amsterdam, The Netherlands.
7.
Ekkad
,
S. V.
, and
Kontrovitz
,
D. M.
, 2002, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
22
28
.
8.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1989, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1619
1630
.
9.
Han
,
J. C.
, 1984, “
Heat Transfer and Friction in Channels With Two Opposite Rib Roughened Walls
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
774
781
.
10.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
321
328
.
11.
Hebert
,
R. T.
, and
Ekkad
,
S. V.
, 2004, “
Combination of Impingement and Trip Strips for Combustor Liner Backside Cooling
,”
Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference
, Charlotte, NC.
12.
Kim
,
Y. W.
,
Arellano
,
L.
,
Vardakas
,
M.
,
Moon
,
H. K.
, and
Smith
,
K. O.
, 2003, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
Proceedings of the ASME Turbo Expo 2003
, Atlanta, GA.
13.
Gao
,
L.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
, 2005, “
Impingement Heat Transfer, Part I: Linearly Stretched Arrays of Holes
,”
J. Thermophys. Heat Transfer
0887-8722,
19
, pp.
57
65
.
14.
Ekkad
,
S. V.
, and
Han
,
J. C.
, 2000, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
957
968
.
15.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1994, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
369
374
.
16.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
, 1996, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
Proceedings of the International Gas Turbine and Aeroengine Congress & Exhibition
, Birmingham, UK.
17.
Correia
,
V. H. S.
, 1996, “
Impingement Cooling Apparatus for Turbine Shrouds Having Ducts of Increasing Cross-Sectional Area in the Direction of Post-Impingement Cooling Flow
,” U.S. Patent No. 5,480,281.
18.
Haumann
,
J.
,
Knopfli
,
A.
,
Sattelmayer
,
T.
, and
Tresch
,
R.
, 1995, “
Apparatus for Impingement Cooling
,” U.S. Patent No. 5,467,815.
19.
Wettstein
,
H.
, 1999, “
Baffle-Cooled Wall Part
,” U.S. Patent No. 5,586,866.
20.
Bunker
,
R. S.
, 1999, “
Cooling for Double Wall Structures
,” U.S. Patent No. 6,000,908.
21.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2002, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
994
1002
.
22.
Esposito
,
E.
,
Ekkad
,
S. V.
,
Dutta
,
P.
,
Kim
,
Y. W.
, and
Greenwood
,
S.
, 2006, “
Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling
,” ASME Paper No. IMECE2006-13300.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.