Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In extremely cold and remote areas such as the west of the Inner Mongolia region, due to the vast land and sparse population, the coverage rate of heating pipes is low, resulting in high non-renewable energy consumption in building heating. To reduce the reliance on polluted energy and utilize sufficient solar energy resources, this study proposed a solar-assisted air source heat pump heating system (SASHP) and realized abundant heating supply for Taolai Airport Terminal in Ejina Banner. Indoor temperature during the heating season was simulated using the trnsys and the coldest month was selected for analyzing and evaluating the heating performance of the SASHP. Compared with a single air source heat pump heating system, the SASHP achieves a 45.81% reduction in energy consumption, and the system's energy efficiency ratio (SEER) increases from 4.14 to 7.85. In addition, the average indoor temperature is 1.02 °C higher than that of the traditional gas boiler heating system on the coldest day. Aiming to minimize the equivalent annual cost, Hooke–Jeeves algorithm is used to optimize key parameters of the SASHP and the solar fraction increased from 45.99% to 51.91%, the SEER improved from 7.85 to 8.74. The optimized system has significantly improved in terms of system performance, while also demonstrating good energy saving, environmental protection, and economic benefits, which can provide a reference for the optimization and application of similar projects.

References

1.
Shi
,
J.
, and
Song
,
Y. H.
,
2019
, “
Research on the Population Distribution Pattern of Inner Mongolia Based on Exploratory Spatial Data Analysis Tools
,”
J. Inner Mongolia Univ. Finan. Econ.
,
17
(
01
), pp.
83
86
.
2.
Gui
,
Y.
,
Jing
,
Z.
, and
Nuoer
,
S.
,
2021
, “
An Empirical Study on the Demand of Air Passenger Transport and Regional Economic Development in Inner Mongolia
,”
Sci. Innov.
,
9
(
5
), pp.
182
188
.
3.
Dong
,
B. K.
,
Zheng
,
C. R. Y.
, and
Yang
,
Y. F.
,
2022
,”
Spatial Structure of Traffic Network and Spatial Interaction of Cities and Towns in Inner Mongolia
,
36
(
07
), pp.
93
99
.
4.
Liu
,
B.
,
2022
, “
Multi-Objective Optimization of Enclosure Structure With Ultra-Low Energy Consumption in Grassland Dwellings Based on NSGA-Ⅱ and BP Neural Networks
,”
Chongqing Architecture
,
10
, pp.
26
28
.
5.
Wang
,
J. Q.
,
2023
, “
Analysis on the Technical Economy and Influencing Factors of Energy-Saving Renovation of Grassland Dwelling in Western Inner Mongolia
,”
49
(
10
), pp.
7
8
.
6.
Jing
,
G. H.
,
Chen
,
W.
,
Yang
,
P.
, and
Wang
,
X.
,
2020
, “
Heating Mode and Envelope Optimization of Residential Buildings on Ultra-Low Energy Consumption Grassland in Western Inner Mongolia
,”
40
(
12
), pp.
1208
1213
.
7.
Sun
,
C.
,
Ju
,
X. L.
,
Hao
,
W. G.
, and
Lu
,
Y. F.
,
2023
, “
Research on Multi-objective Optimization of Control Strategies and Equipment Parameters for a Combined Heating System of Geothermal and Solar Energy in Cold and Arid Regions Based on TRNSYS
,”
Case Stud. Therm. Eng.
,
50
(
2023
), p.
103441
.
8.
Bakirci
,
K.
, and
Yuksel
,
B.
,
2011
, “
Experimental Thermal Performance of a Solar Source Heat-Pump System for Residential Heating in Cold Climate Region
,”
Appl. Therm. Eng.
,
31
(
8–9
), pp.
1508
1518
.
9.
Jin
,
G.
,
Chen
,
Z. H.
,
Guo
,
S. P.
, and
Hao
,
N.
,
2021
, “
Feasibility Analysis of Heating With Solar Energy-Ground Source Heat Pumps System in Inner Mongolian Areas
,”
Acta Energy Sol. Sin.
,
42
(
04
), pp.
334
341
.
10.
Hao
,
Y. Z.
,
Li
,
X. H.
,
Hu
,
Y. N.
, and
Zhao
,
J. Q.
,
2021
, “
Variation Law and Influencing Factors of Solar Energy Resources in Inner Mongolia in 57 Years
,”
Acta Energy Sol. Sin.
,
42
(
09
), pp.
145
151
.
11.
Jing
,
G. H.
,
Yang
,
P.
,
Ding
,
C.
,
Wang
,
Z. H.
, and
Liang
,
N. F.
,
2020
, “
Residential Heating in Western Inner Mongolia With Clean Solar-Wind Energies: A Simulation Study
,”
Chin. J. Vac. Sci. Technol.
,
40
(
8
), pp.
762
767
.
12.
Xu
,
W.
,
Liu
,
C.
,
Li
,
A.
,
Li
,
J.
, and
Qiao
,
B.
,
2020
, “
Feasibility and Performance Study on Hybrid Air Source Heat Pump System for Ultra-Low Energy Building in Severe Cold Region of China
,”
Renew. Energy
,
146
, pp.
2124
2133
.
13.
Zhang
,
S. L.
,
Liu
,
S. L.
,
Wang
,
J. H.
,
Li
,
Y. L.
, and
Yu
,
Z. B.
,
2023
, “
Analysis of a Solar-Assisted Heat Pump System With Hybrid Energy Storage for Space Heating
,”
Appl. Therm. Energy
,
231
, p.
120884
.
14.
Ma
,
X. X.
, and
Wang
,
X. T.
,
2020
, “
Simulation on Solar Assisted Air Source Heat Pump Heating System in Rural House by Using TRNSYS
,”
IOP Conf. Ser. Earth Environ. Sci.
,
508
, p.
012035
.
15.
Zhou
,
W. H.
,
Wang
,
B.
,
Wang
,
M.
, and
Chen
,
Y. Y.
,
2022
, “
Performance Analysis of the Coupled Heating System of the Air-Source Heat Pump, the Energy Accumulator and the Water-Source Heat Pump
,”
Energies
,
15
(
19
), p.
7305
.
16.
Hobbi
,
A.
, and
Siddiqui
,
K.
,
2009
, “
Optimal Design of a Forced Circulation Solar Water Heating System for a Residential Unit in Cold Climate Using TRNSYS
,”
Sol. Energy
,
83
(
5
), pp.
700
714
.
17.
Yang
,
L. W.
,
Xu
,
R. J.
,
Hua
,
N.
,
Xia
,
Y.
,
Zhou
,
W. B.
,
Yang
,
T.
,
Belyayev
,
Y.
, and
Wang
,
H. S.
,
2021
, “
Review of the Advances in Solar-Assisted Air Source Heat Pumps for the Domestic Sector
,”
Energy Convers. Manage.
,
247
, p.
114710
.
18.
Zhang
,
F.
,
Cai
,
J. Y.
,
Ji
,
J.
,
Han
,
K. D.
, and
Ke
,
W.
,
2021
, “
Experimental Investigation on the Heating and Cooling Performance of a Solar Air Composite Heat Source Heat Pump
,”
Renew. Energy
,
161
, pp.
221
229
.
19.
Esmaeel
,
S.
, and
Mazyar
,
S.
,
2019
, “
Performance Simulation of Combined Heat Pump with Unglazed Transpired Solar Collector
,”
Solar Energy
,
180
, pp.
576
577
.
20.
Lerch
,
W.
,
Heinz
,
A.
, and
Heimrath
,
R.
,
2015
, “
Direct Use of Solar Energy as Heat Source for a Heat Pump in Comparison to a Conventional Parallel Solar Air Heat Pump System
,”
Energy Build.
,
100
, pp.
34
42
.
21.
Liu
,
Z.
,
Liu
,
Y.
,
Wu
,
D.
,
Jin
,
G.
,
Yu
,
H.
, and
Ma
,
W.
,
2020
, “
Performance and Feasibility Study of Solar-Air Source Pump Systems for Low-Energy Residential Buildings in Alpine Regions
,”
J. Clean. Prod.
,
256
, p.
120735
.
22.
Nilufer Egrican
,
A.
,
1991
, “
Performance of a Solar Assisted Heat Pump System
,”
Energy Convers. Manage.
,
31
(
1
), pp.
17
25
.
23.
AI-Dabbas
,
M. A. A.
,
2009
, “
The Simulation of Performance of Seasonal Heat Storage Coupled to Solar-Assisted Heat Pump in Jordan
,”
Appl. Solar Energy
,
45
(
2
), pp.
83
92
.
24.
Tian
,
Z. Y.
,
Perers
,
B.
,
Furbo
,
S.
, and
Fan
,
J. H.
,
2018
, “
Thermo-Economic Optimization of a Hybrid Solar District Heating Plant With Flat Plate Collectors and Parabolic Trough Collectors in Series
,”
Energy Convers. Manage.
,
165
, pp.
92
101
.
25.
Zeng
,
N. H.
,
Yuan
,
Y. P.
,
Sun
,
L. L.
,
Cao
,
X. L.
, and
Deng
,
Z. H.
,
2018
, “
Optimization on Air Source Heat Pump Assisted Solar Water Heating System Based on TRNSYS
,”
Acta Energ. Sol. Sin.
,
39
(
5
), pp.
1245
1254
.
26.
Long
,
T.
,
Qiao
,
Z.
,
Wang
,
M.
,
Li
,
Y.
,
Lu
,
J.
,
Li
,
W.
,
Zeng
,
L.
, and
Huang
,
S.
,
2020
, “
Performance Analysis and Optimization of a Solar-Air Source Heat Pump Heating System in Tibet, China
,”
Energy Build.
,
220
, p.
110084
.
27.
Jing
,
G. H.
, and
Wang
,
B.
,
2019
, “
Solar-Wind-Fossil Energy Coupled Heating to Improve Indoor Temperature and Thermal Comfort of Houses in Western Inner Mongolia Grasslands in Winter
,”
J. Arid Land Resour. Environ.
,
33
(
06
), pp.
90
98
.
28.
China Academy of Building Research Co
,
2019
, “
Technical Code for Solar Heating
”, GB 50495-2019, pp.
12
15
.
29.
China Academy of Building Research Co
,
2018
, “
Technical Specification for Air Source Heat Pump Heating System
”, T/CECS 564–2018, pp.
5
7
.
30.
Miao
,
S. X.
,
2018
, “
Discussion on Calculation Method for Hot Water Storage Tank of Air Source Heat Pump Water Heater
,”
Technol. Mater.
,
11
, pp.
57
59
.
31.
Li
,
T.
,
Liu
,
Q.
,
Liu
,
L.
,
Li
,
Y.
,
Yu
,
J.
,
Wang
,
X.
, and
Mao
,
Q.
,
2023
, “
Feasibility Study on Solar Coupled Gas-Fired Boiler Heating System Retrofit in Residential Buildings in the HSCW Zone of China
,”
Case Stud. Therm. Eng.
,
42
, pp.
102698
.
32.
Hu
,
K. Y.
,
Liu
,
F.
,
Wu
,
X. J.
,
Hu
,
Y. Q.
,
Zheng
,
Y.
, and
Tian
,
S.
,
2023
, “
Carbon-Economy Analysis on Energy Supply Methods for Rural Buildings Based on TRNSYS Energy Consumption Prediction
,”
Integr. Intell. Energy
,
45
(
8
), pp.
64
71
.
You do not currently have access to this content.