Abstract

Optimization and control of building thermal energy storage holds great potential for unlocking demand-side flexibility, an asset that is being given much attention in current grid reforms responding to the climate crisis. As greater information regarding grid operations is becoming available, grid-interactive building controls inherently have become a multi-objective problem. Typical multi-objective optimization frameworks often introduce greater complexity and computational burden and are less favorable for achieving widespread adoption. With the overall goal of easing deployment of advanced building controls and aiding the building-to-grid integration, this work aims to evaluate the trade-offs and degrees of sub-optimality introduced by implementing single-objective controllers only. We formulate and apply a detailed single-objective, model predictive control (MPC) framework to individually optimize building thermal storage assets of two types of commercial buildings, informed by future grid scenarios, around energy, economic, environmental, and peak demand objectives. For each day, we compare the building’s performance in every category as if it had been controlled by four separate single-objective model predictive controllers. By comparing the individual controllers for each day, we reveal the level of harmony or discord that exists between these simple single-objective problems. In essence, we quantify the potential loss that would occur in three of the objectives if the optimal control problem were to optimally respond to only one of the grid signals. Results show that on most days, the carbon and energy controllers retained most of the savings in energy, cost, and carbon. Trade-offs were observed between the peak demand controller and the other objectives, and during extreme energy pricing events. These observations are further discussed in terms of their implications for the design of grid-interactive building incentive signals and utility tariffs.

References

1.
Larson
,
E.
,
Greig
,
C.
,
Jenkins
,
J.
,
Mayfield
,
E.
,
Pascale
,
A.
,
Zhang
,
C.
,
Drossman
,
J.
,
Williams
,
R.
,
Pacala
,
S.
,
Socolow
,
R.
,
Baik
,
E. J.
,
Birdsey
,
R.
,
Duke
,
R.
,
Jones
,
R.
,
Haley
,
B.
,
Leslie
,
E.
,
Paustian
,
K.
, and
Swan
,
A.
,
2020
, “
Net-Zero America: Potential Pathways, Infrastructure, and Impacts
,” Interim Report,
Princeton University
, https://netzeroamerica.princeton.edu/the-report
2.
Williams
,
J. H.
,
Jones
,
R. A.
,
Haley
,
B.
,
Kwok
,
G.
,
Hargreaves
,
J.
,
Farbes
,
J.
, and
Torn
,
M. S.
,
2021
, “
Carbon-Neutral Pathways for the United States
,”
AGU Adv.
,
2
(
1
), p.
e2020AV000284
.
3.
Pavlak
,
G. S.
,
Henze
,
G. P.
, and
Cushing
,
V. J.
,
2014
, “
Optimizing Commercial Building Participation in Energy and Ancillary Service Markets
,”
Energy Build.
,
81
, pp.
115
126
.
4.
Reynders
,
G.
,
Nuytten
,
T.
, and
Saelens
,
D.
,
2013
, “
Potential of Structural Thermal Mass for Demand-Side Management in Dwellings
,”
Build. Environ.
,
64
, pp.
187
199
.
5.
Henze
,
G. P.
,
Felsmann
,
C.
, and
Knabe
,
G.
,
2004
, “
Evaluation of Optimal Control for Active and Passive Building Thermal Storage
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
173
183
.
6.
Greensfelder
,
E. M.
,
Henze
,
G. P.
, and
Felsmann
,
C.
,
2011
, “
An Investigation of Optimal Control of Passive Building Thermal Storage With Real Time Pricing
,”
J. Build. Performance Simul.
,
4
(
2
), pp.
91
104
.
7.
Niu
,
J.
,
Tian
,
Z.
,
Lu
,
Y.
, and
Zhao
,
H.
,
2019
, “
Flexible Dispatch of a Building Energy System Using Building Thermal Storage and Battery Energy Storage
,”
Appl. Energy.
,
243
(
1
), pp.
274
287
.
8.
Delgado
,
M. G.
,
Ramos
,
J. S.
,
Dominguez
,
S. A.
,
Rios
,
J. A. T.
, and
Cabeza
,
L. F.
,
2020
, “
Building Thermal Storage Technology: Compensating Renewable Energy Fluctuations
,”
J. Energy Storage
,
27
, p.
101147
.
9.
Miletić
,
M.
,
Schirrer
,
A.
, and
Kozek
,
M.
,
2015
, “
Load Management in Smart Grids With Utilization of Load-Shifting Potential in Building Climate Control
,”
2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST)
,
Vienna, Austria
, IEEE, pp.
468
474
.
10.
Swaminathan
,
S.
,
Pavlak
,
G. S.
, and
Freihaut
,
J.
,
2020
, “
Sizing and Dispatch of an Islanded Microgrid With Energy Flexible Buildings
,”
Appl. Energy
,
276
(
15
), p.
115355
.
11.
Yu
,
M. G.
, and
Pavlak
,
G. S.
,
2021
, “
Assessing the Performance of Uncertainty-Aware Transactive Controls for Building Thermal Energy Storage Systems
,”
Appl. Energy
,
282
(
15
), p.
116103
.
12.
Langevin
,
J.
,
Harris
,
C. B.
,
Satre-Meloy
,
A.
,
Chandra-Putra
,
H.
,
Speake
,
A.
,
Present
,
E.
,
Adhikari
,
R.
,
Wilson
,
E. J. H.
, and
Satchwell
,
A. J.
,
2021
, “
Us Building Energy Efficiency and Flexibility as an Electric Grid Resource
,”
Joule
,
5
(
8
), pp.
2102
2128
.
13.
Li
,
L. X.
, and
Pavlak
,
G. S.
,
2021
, “
Pattern Analysis of Dynamic Grid Incentives and the Implications on Optimal Control of Building Thermal Energy Storage
,”
International High Performance Buildings Conference
,
West Lafayette, IN
, pp.
1
10
.
14.
Blum
,
D.
,
Wang
,
Z.
,
Weyandt
,
C.
,
Kim
,
D.
,
Wetter
,
M.
,
Hong
,
T.
, and
Ann Piette
,
M.
,
2022
, “
Field Demonstration and Implementation Analysis of Model Predictive Control in an Office HVAC System
,”
Appl. Energy
,
318
(
15
), p.
119104
.
15.
Henze
,
G. P.
,
2013
, “
Model Predictive Control for Buildings: A Quantum Leap?
16.
Oldewurtel
,
F.
,
Sturzenegger
,
D.
, and
Morari
,
M.
,
2013
, “
Importance of Occupancy Information for Building Climate Control
,”
Appl. Energy
,
101
, pp.
521
532
.
17.
Killian
,
M.
, and
Kozek
,
M.
,
2016
, “
Ten Questions Concerning Model Predictive Control for Energy Efficient Buildings
,”
Build. Environ.
,
105
(
15
), pp.
403
412
.
18.
Dong
,
B.
,
Li
,
Z.
,
Taha
,
A.
, and
Gatsis
,
N.
,
2018
, “
Occupancy-Based Buildings-to-Grid Integration Framework for Smart and Connected Communities
,”
Appl. Energy
,
219
(
1
), pp.
123
137
.
19.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C. N.
,
Morari
,
M.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Wirth
,
K.
,
2010a
, “
Energy Efficient Building Climate Control Using Stochastic Model Predictive Control and Weather Predictions
,”
Proceedings of the 2010 American Control Conference
,
Baltimore, MD
, IEEE, pp.
5100
5105
.
20.
Zwickel
,
P.
,
Engelmann
,
A.
,
Gröll
,
L.
,
Hagenmeyer
,
V.
,
Sauer
,
D.
, and
Faulwasser
,
T.
,
2019
, “
A Comparison of Economic MPC Formulations for Thermal Building Control
,”
2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)
,
Bucharest, Romania
, IEEE, pp.
1
5
.
21.
Li
,
X.
, and
Malkawi
,
A.
,
2016
, “
Multi-objective Optimization for Thermal Mass Model Predictive Control in Small and Medium Size Commercial Buildings Under Summer Weather Conditions
,”
Energy
,
112
(
1
), pp.
1194
1206
.
22.
Hazyuk
,
I.
,
Ghiaus
,
C.
, and
Penhouet
,
D.
,
2012a
, “
Optimal Temperature Control of Intermittently Heated Buildings Using Model Predictive Control: Part I—Building Modeling
,”
Build. Environ.
,
51
, pp.
379
387
.
23.
Hazyuk
,
I.
,
Ghiaus
,
C.
, and
Penhouet
,
D.
,
2012b
, “
Optimal Temperature Control of Intermittently Heated Buildings Using Model Predictive Control: Part Ii—Control Algorithm
,”
Build. Environ.
,
51
, pp.
388
394
.
24.
Lauro
,
F.
,
Moretti
,
F.
,
Capozzoli
,
A.
, and
Panzieri
,
S.
,
2015
, “
Model Predictive Control for Building Active Demand Response Systems
,”
Energy Procedia
,
83
, pp.
494
503
.
25.
Oldewurtel
,
F.
,
Ulbig
,
A.
,
Parisio
,
A.
,
Andersson
,
G.
, and
Morari
,
M.
,
2010b
, “
Reducing Peak Electricity Demand in Building Climate Control Using Real-Time Pricing and Model Predictive Control
,”
49th IEEE Conference on Decision and Control (CDC)
,
Atlanta, GA
, IEEE, pp.
1927
1932
.
26.
Hu
,
M.
,
Xiao
,
F.
,
Jørgensen
,
J. B.
, and
Li
,
R.
,
2019
, “
Price-Responsive Model Predictive Control of Floor Heating Systems for Demand Response Using Building Thermal Mass
,”
Appl. Therm. Eng.
,
153
(
5
), pp.
316
329
.
27.
Ma
,
J.
,
Qin
,
J.
,
Salsbury
,
T.
, and
Xu
,
P.
,
2012
, “
Demand Reduction in Building Energy Systems Based on Economic Model Predictive Control
,”
Chem. Eng. Sci.
,
67
(
1
), pp.
92
100
.
28.
Ma
,
J.
,
Qin
,
S. J.
,
Li
,
B.
, and
Salsbury
,
T.
,
2011
, “
Economic Model Predictive Control for Building Energy Systems
,”
2011 IEEE PES Innovative Smart Grid Technologies
,
Perth, Australia
, IEEE, pp.
1
6
.
29.
Bianchini
,
G.
,
Casini
,
M.
,
Vicino
,
A.
, and
Zarrilli
,
D.
,
2016
, “
Demand-Response in Building Heating Systems: A Model Predictive Control Approach
,”
Appl. Energy
,
168
(
15
), pp.
159
170
.
30.
Aoki
,
Y.
,
Ito
,
H.
,
Ninagawa
,
C.
, and
Morikawa
,
J.
,
2018
, “
Smart Grid Real-Time Pricing Optimization Control With Simulated Annealing Algorithm for Office Building Air-Conditioning Facilities
,”
2018 IEEE International Conference on Industrial Technology (ICIT)
,
Lyon, France
, IEEE, pp.
1308
1313
.
31.
Marušić
,
D.
,
Lešić
,
V.
,
Capuder
,
T.
, and
Vasak
,
M.
,
2018
, “
Price-Optimal Energy Flow Control of a Building Microgrid Connected to a Smart Grid
,”
26th Mediterranean Conference on Control and Automation (MED)
,
Zadar, Croatia
, IEEE, pp.
1
9
.
32.
Zhao
,
Y.
,
Lu
,
Y.
,
Yan
,
C.
, and
Wang
,
S.
,
2015
, “
MPC-Based Optimal Scheduling of Grid-Connected Low Energy Buildings With Thermal Energy Storages
,”
Energy Build.
,
86
, pp.
415
426
.
33.
Vogler-Finck
,
P. J. C.
,
Wisniewski
,
R.
, and
Popovski
,
P.
,
2018
, “
Reducing the Carbon Footprint of House Heating Through Model Predictive Control—A Simulation Study in Danish Conditions
,”
Sustain. Cities Soc.
,
42
, pp.
558
573
.
34.
Knudsen
,
M. D.
, and
Petersen
,
S.
,
2016
, “
Demand Response Potential of Model Predictive Control of Space Heating Based on Price and Carbon Dioxide Intensity Signals
,”
Energy Build.
,
125
(
1
), pp.
196
204
.
35.
Hawkes
,
A. D.
,
2010
, “
Estimating Marginal CO2 Emissions Rates for National Electricity Systems
,”
Energy Policy
,
38
(
10
), pp.
5977
5987
.
36.
Siler-Evans
,
K.
,
Azevedo
,
I. L.
, and
Morgan
,
M. G.
,
2012
, “
Marginal Emissions Factors for the Ss Electricity System
,”
Environ. Sci. Technol.
,
46
(
9
), pp.
4742
4748
.
37.
McKenna
,
E.
, and
Darby
,
S. J.
,
2017
, “
How Much Could Domestic Demand Response Technologies Reduce CO2 Emissions? European Council for an Energy-Efficiency Economy
, https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2017/2-policy-governance-design-implementation-and-evaluation-challenges/how-much-could-domestic-demand-response-technologies-reduce-co2-emissions/
38.
Smith
,
C. N.
, and
Hittinger
,
E.
,
2019
, “
Using Marginal Emission Factors to Improve Estimates of Emission Benefits From Appliance Efficiency Upgrades
,”
Energy Efficiency
,
12
(
3
), pp.
585
600
.
39.
Amoroso
,
B.
,
Hittinger
,
E.
, and
McConky
,
K.
,
2018
, “
Keeping Your Cool—A Multi-stakeholder Look at AC Sizing
,”
Build. Environ.
,
131
, pp.
306
329
.
40.
Levy
,
J. I.
,
Woo
,
M. K.
, and
Tambouret
,
Y.
,
2016
, “
Energy Savings and Emissions Reductions Associated With Increased Insulation for New Homes in the United States
,”
Build. Envirron.
,
96
(
1
), pp.
72
79
.
41.
Collinge
,
W. O.
,
Rickenbacker
,
H. J.
,
Landis
,
A. E.
,
Thiel
,
C. L.
, and
Bilec
,
M. M.
,
2018
, “
Dynamic Life Cycle Assessments of a Conventional Green Building and a Net Zero Energy Building: Exploration of Static, Dynamic, Attributional, and Consequential Electricity Grid Models
,”
Environ. Sci. Technol.
,
52
(
19
), pp.
11429
11438
.
42.
Zivin
,
J. S. G.
,
Kotchen
,
M. J.
, and
Mansur
,
E. T.
,
2014
, “
Spatial and Temporal Heterogeneity of Marginal Emissions: Implications for Electric Cars and Other Electricity-Shifting Policies
,”
J. Econ. Behav. Organ.
,
107
, pp.
248
268
.
43.
Callaway
,
D. S.
,
Fowlie
,
M.
, and
McCormick
,
G.
,
2018
, “
Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources
,”
J. Assoc. Environ. Resour. Econ.
,
5
(
1
), pp.
39
75
.
44.
Péan
,
T.
,
Salom
,
J.
, and
Ortiz
,
J.
,
2018
, “
Environmental and Economic Impact of Demand Response Strategies for Energy Flexible Buildings
,”
4th Building Simulation and Optimization Conference
,
Cambridge, UK
, pp.
277
283
.
45.
Péan
,
T.
,
Costa-Castelló
,
R.
, and
Salom
,
J.
,
2019
, “
Price and Carbon-Based Energy Flexibility of Residential Heating and Cooling Loads Using Model Predictive Control
,”
Sustain. Cities Soc.
,
50
, p.
101579
.
46.
Yang
,
R.
, and
Wang
,
L.
,
2012
, “
Multi-objective Optimization for Decision-Making of Energy and Comfort Management in Building Automation and Control
,”
Sustain. Cities Soc.
,
2
(
1
), pp.
1
7
.
47.
Kircher
,
K. J.
, and
Zhang
,
K. M.
,
2015
, “
Model Predictive Control of Thermal Storage for Demand Response
,”
2015 American Control Conference (ACC)
,
Chicago, IL
, IEEE, pp.
956
961
.
48.
Wang
,
J.
,
Munankarmi
,
P.
,
Maguire
,
J.
,
Shi
,
C.
,
Zuo
,
W.
,
Roberts
,
D.
, and
Jin
,
X.
,
2022
, “
Carbon Emission Responsive Building Control: A Case Study With an All-Electric Residential Community in a Cold Climate
,”
Appl. Energy
,
314
(
15
), p.
118910
.
49.
Gagnon
,
P.
,
Frazier
,
W.
,
Elaine
,
H.
, and
Cole
,
W.
,
2021
, “
Cambium Documentation: Version 2021
,” Tech. Rep.,
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
50.
DOE
,
2013
, “
Energyplus Engineering Reference, The Reference to Energyplus Calculations
,” https://wem.lbl.gov/sites/all/files/engineeringreference.pdf
51.
Brandemuehl
,
M.
,
Gabel
,
S.
, and
Andresen
,
I.
,
1993
,
HVAC 2 Toolkit: Algorithms and Subroutines for Secondary HVAC System Energy Calculations.
Atlanta, GA
:
American Society of Heating, Refrigerating and Air-Conditioning Engineers
.
52.
Henze
,
G. P.
,
Pavlak
,
G. S.
,
Florita
,
A. R.
,
Dodier
,
R. H.
, and
Hirsch
,
A. I.
,
2015
, “
An Energy Signal Tool for Decision Support in Building Energy Systems
,”
Appl. Energy
,
138
(
15
), pp.
51
70
.
53.
Henze
,
G. P.
,
Pavlak
,
G. S.
,
Florita
,
A. R.
,
Dodier
,
R. H.
, and
Hirsch
,
A. I.
,
2014
, “
An Energy Signal Tool for Decision Support in Building Energy Systems
,” Tech. Rep.,
National Renewable Energy Lab. (NREL)
,
Golden, CO
, https://www.nrel.gov/docs/fy15osti/63130.pdf
54.
Corbin
,
C. D.
,
Henze
,
G. P.
, and
May-Ostendorp
,
P.
,
2013
, “
A Model Predictive Control Optimization Environment for Real-Time Commercial Building Application
,”
J. Build. Performance Simul.
,
6
(
3
), pp.
159
174
.
55.
Cole
,
W. J.
,
Corcoran
,
S.
,
Gates
,
N.
,
Mai
,
T. T.
, and
Das
,
P.
,
2020
, “
2020 Standard Scenarios Report: A U.S. Electric Sector Outlook
,” Tech. Rep.,
National Renewable Energy Lab. (NREL)
,
Golden, CO
, https://www.nrel.gov/docs/fy21osti/77442.pdf
56.
Ho
,
J.
,
Becker
,
J.
,
Brown
,
M.
,
Brown
,
P.
,
Chernyakhovskiy
,
I.
,
Cohen
,
S.
,
Cole
,
W.
,
Corcoran
,
S.
,
Eurek
,
K.
,
Frazier
,
W.
,
Gagnon
,
P.
,
Gates
,
N.
,
Greer
,
D.
,
Jadun
,
P.
,
Khanal
,
S.
,
Machen
,
S.
,
Macmillan
,
M.
,
Mai
,
T.
,
Mowers
,
M.
,
Murphy
,
C.
,
Rose
,
A.
,
Schleifer
,
A.
,
Sergi
,
B.
,
Steinberg
,
D.
,
Sun
,
Y.
, and
Zhou
,
E.
,
2020
, “
Regional Energy Deployment System (Reeds) Model Documentation: Version 2019
,” Tech. Rep.,
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
57.
Exemplar
,
E.
,
2019
, “
Plexos Market Simulation Software
,” https://energyexemplar.com/solutions/plexos/
58.
Gagnon
,
P.
,
Frazier
,
W.
,
Elaine
,
H.
, and
Cole
,
W.
,
2021
, “
Long-Run Marginal CO2 Emission Rates Workbooks for 2020 Standard Scenarios Cambium Data
,” Tech. Rep.,
National Renewable Energy Lab. (NREL)
,
Golden, CO
. https://data.nrel.gov/submissions/170
You do not currently have access to this content.