Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

An energy and exergy analysis has been conducted on a hybrid desalination system powered by solar energy using vacuum collectors and geothermal energy. This system is specifically designed to operate under the environmental conditions of southern Tunisia. The desalination plant is mainly constituted by a solar collector field, a thermal energy storage system, a multiple effect distillation (MED) unit system, an evaporative condenser, and a geothermal energy recovery system. The analysis is performed using computational code established with ees software. A parametric study is conducted to examine the effects of key operating parameters on plant performances. The operating mode is determined for winter and summer seasons. The obtained results show that the thermal storage system provides thermal power permitting continuous operation for about 8 h during the nighttime period. The storage tank is the most contributor in exergy destruction with approximately 4.3 kW in winter and 5.5 kW in summer followed by the solar collector field of about 3.6 kW in winter and 3.8 kW in summer. The exergy efficiency of the desalination effects reaches 70% in winter and 75% in summer. The daily production of drinking water is about 12 m3/day in winter and 14 m3/day in summer. This meets the daily drinking water needs of around 3000 people.

References

1.
Chaibi
,
M. T.
,
2000
, “
An Overview of Solar Desalination for Domestic and Agriculture Water Needs in Remote Arid Areas
,”
Desalination
,
127
(
2
), pp.
119
133
.
2.
Bouchekima
,
B. B.
,
2003
, “
A Solar Desalination Plant for Domestic Water Needs in Arid Areas of South Algeria
,”
Desalination
,
153
(
1–3
), pp.
65
69
.
3.
Gunawan
,
A.
,
Simmons
,
R. A.
,
Haynes
,
M. W.
,
Moreno
,
D.
,
Menon
,
A. K.
,
Hatzell
,
M. C.
, and
Yee
,
S. K.
,
2019
, “
Techno-Economics of Cogeneration Approaches for Combined Power and Desalination From Concentrated Solar Power
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021004
.
4.
Ahmed
,
M. H.
,
Amin
,
A. M. A.
, and
Fath
,
H.
,
2019
, “
Modeling of Solar Power Plant for Electricity Generation and Water Desalination
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011015
.
5.
Wang
,
Y.
,
Morosuk
,
T.
, and
Cao
,
W.
,
2024
, “
Carbon Footprint of Seawater Desalination Technologies: A Review
,”
ASME J. Energy Resour. Technol.
,
146
(
8
), p.
080801
.
6.
Muftah
,
A. K.
,
Dhahri
,
H.
,
Zili-Ghedira
,
L.
, and
Abuggerah
,
M. M.
,
2022
, “
Mathematical Modeling and Simulation of Multi-effect Distillation Without Thermal Vapor Compressor Applied to Zuara Desalination Plant
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041010
.
7.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M. A.
, and
Al-Sadah
,
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. T echnol.
,
141
(
4
), p.
042008
.
8.
Almatrafi
,
E.
,
Moloney
,
F.
, and
Goswami
,
D. Y.
,
2022
, “
Performance Analysis of Solar Thermal Powered Supercritical Organic Rankine Cycle-Assisted Low-Temperature Multi-effect Desalination Coupled With Mechanical Vapor Compression
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021002
.
9.
Kim
,
Y.
,
Thu
,
K.
,
Myat
,
A.
, and
Ng
,
K. C.
,
2013
, “
Numerical Simulation of Solar-Assisted Multi-effect Distillation (SMED) Desalination Systems
,”
Desalin. Water Treat.
,
51
(
4–6
), pp.
1242
1253
.
10.
Hamed
,
O. A.
,
Kosaka
,
H.
,
Bamardouf
,
K. H.
,
Al-Shail
,
K.
, and
Al-Ghamdi
,
A. S.
,
2016
, “
Concentrating Solar Power for Seawater Thermal Desalination
,”
Desalination
,
396
(
51
), pp.
70
78
.
11.
Askari
,
I. B.
, and
Ameri
,
M.
,
2016
, “
Techno Economic Feasibility Analysis of Linear Fresnel Solar Field as Thermal Source of the MED/TVC Desalination System
,”
Desalination
,
394
(
51
), pp.
1
17
.
12.
Kouta
,
A.
,
Al-Sulaiman
,
F.
,
Atif
,
M.
, and
Bin Marshad
,
S.
,
2016
, “
Entropy, Exergy, and Cost Analyses of Solar Driven Cogeneration Systems Using Supercritical CO2 Brayton Cycles and MEE-TVC Desalination System
,”
Energy Convers. Manage.
,
115
(
37
), pp.
253
264
.
13.
Stuber
,
M. D.
,
Sullivan
,
C.
,
Kirk
,
S. A.
,
Farrand
,
J. A.
,
Schillaci
,
P. V.
,
Fojtasek
,
B. D.
, and
Mandell
,
A. H.
,
2015
, “
Pilot Demonstration of Concentrated Solar-Powered Desalination of Subsurface Agricultural Drainage Water and Other Brackish Groundwater Sources
,”
Desalination
,
355
(
50
), pp.
186
196
.
14.
Alarcón-Padilla
,
D. C.
,
García-Rodríguez
,
L.
, and
Blanco-Gálvez
,
J.
,
2010
, “
Design Recommendations for a Multi-effect Distillation Plant Connected to a Double-Effect Absorption Heat Pump: A Solar Desalination Case Study
,”
Desalination
,
262
(
1–3
), pp.
11
14
.
15.
Yılmaz
,
İH
, and
Söylemez
,
M. S.
,
2012
, “
Design and Computer Simulation on Multi-effect Evaporation Seawater Desalination System Using Hybrid Renewable Energy Sources in Turkey
,”
Desalination
,
291
, pp.
23
40
.
16.
Aroussy
,
Y.
,
Saifaoui
,
D.
,
Lilane
,
A.
, and
Tarfaoui
,
M.
,
2020
, “
Thermo-Economic Simulation and Analysis of a Solar Thermal Cycle Combined With Two Desalination Processes by Multi-effect Distillation (MED)
,”
Mater. Today: Proc.
,
30
(
4
), pp.
1027
1032
.
17.
El-Agouz
,
S. A.
,
Abd El-Aziz
,
G. B.
, and
Awad
,
A. M.
,
2014
, “
Solar Desalination System Using Spray Evaporation
,”
Energy
,
76
(
49
), pp.
276
283
.
18.
Calise
,
F.
,
Cipollina
,
A.
,
d’Accadia
,
M. D.
, and
Piacentino
,
A.
,
2014
, “
A Novel Renewable Polygeneration System for a Small Mediterranean Volcanic Island for The Combined Production of Energy and Water: Dynamic Simulation and Economic Assessment
,”
Appl. Energy
,
135
(
40
), pp.
675
693
.
19.
Calise
,
F.
,
Macaluso
,
A.
,
Piacentino
,
A.
, and
Vanoli
,
L.
,
2017
, “
A Novel Hybrid Polygeneration System Supplying Energy and Desalinated Water by Renewable Sources in Pantelleria Island
,”
Energy
,
137
(
52
), pp.
1086
1106
.
20.
Manenti
,
F.
,
Masi
,
M.
,
Santucci
,
G.
, and
Manenti
,
G.
,
2013
, “
Parametric Simulation and Economic Assessment of a Heat Integrated Geothermal Desalination Plant
,”
Desalination
,
317
(
48
), pp.
193
205
.
21.
National Agency for Energy Conservation (ANME)
,
2015
, “Solar Photovoltaic,” https://www.anme.tn/en/content/solar-photovoltaic
22.
Hassan
,
H.
, and
Abo-elfadl
,
S.
,
2018
, “
Experimental Study on the Performance of Double Pass and Two Inlet Ports Solar Air Heater (SAH) at Different Configurations of the Absorber Plate
,”
Renewable Energy
,
116
(
Part A, 28
), pp.
728
740
.
23.
Hassan
,
H.
,
Abo-elfadl
,
S.
, and
El-Dosoky
,
M. F.
,
2020
, “
An Experimental Investigation of the Performance of New Design of Solar Air Heater (Tubular)
,”
Renewable Energy
,
151
(
30
), pp.
1055
1066
.
24.
Ibrahim
,
G. A.
,
Nabhan
,
M. B. W.
, and
Anabtawi
,
M. Z.
,
1995
, “
An Investigation Into a Falling Film Type Cooling Tower
,”
Int. J. Refrig.
,
18
(
8
), pp.
557
564
.
25.
Kumaresan
,
G.
,
Sridhar
,
R.
, and
Velraj
,
R.
,
2012
, “
Performance Studies of a Solar Parabolic Trough Collector With a Thermal Energy Storage System
,”
Energy
,
47
(
1
), pp.
395
402
.
26.
Abd Elbar
,
A. R.
, and
Hassan
,
H.
,
2019
, “
Experimental Investigation on the Impact of Thermal Energy Storage on the Solar Still Performance Coupled With PV Module Via New Integration
,”
Sol. Energy
,
184
(
62
), pp.
584
593
.
27.
Naik
,
B. K.
,
Bhowmik
,
M.
, and
Muthukumar
,
P.
,
2019
, “
Experimental Investigation and Numerical Modelling on the Performance Assessments of Evacuated U-Tube Solar Collector Systems
,”
Renewable Energy
,
134
(
54
), pp.
1344
1361
.
28.
Öztürk
,
H. H.
,
2004
, “
Experimental Determination of Energy and Exergy Efficiency of the Solar Parabolic-Cooker
,”
Sol. Energy
,
77
(
1
), pp.
67
71
.
29.
Yousef
,
M. S.
, and
Hassan
,
H.
,
2019
, “
Assessment of Different Passive Solar Stills Via Exergoeconomic, Exergoenvironmental, and Exergoenviroeconomic Approaches: A Comparative Study
,”
Sol. Energy
,
182
(
62
), pp.
316
331
.
30.
Muangnoi
,
T.
,
Asvapoositkul
,
W.
, and
Wongwises
,
S.
,
2007
, “
An Exergy Analysis on the Performance of a Counter Flow Wet Cooling Tower
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
910
917
.
31.
Farmahini-Farahani
,
M.
,
Delfani
,
S.
, and
Esmaeelian
,
J.
,
2012
, “
Exergy Analysis of Evaporative Cooling to Select the Optimum System in Diverse Climates
,”
Energy
,
40
(
1
), pp.
250
257
.
32.
Chengqin
,
R.
,
Nianping
,
L.
, and
Guangfa
,
T.
,
2002
, “
Principles of Exergy Analysis in HVAC and Evaluation of Evaporative Cooling Schemes
,”
Build. Environ.
,
37
(
11
), pp.
1045
1055
.
33.
Palenzuela
,
P.
,
Hassan
,
A. S.
,
Zaragoza
,
G.
, and
Alarcón-Padilla
,
D. C.
,
2014
, “
Steady State Model for Multi-effect Distillation Case Study: Plataforma Solar De Almería MED Pilot Plant
,”
Desalination
,
337
(
49
), pp.
31
42
.
34.
Abid
,
A.
,
Jamil
,
M. A.
,
Sabah
,
N.
,
Farooq
,
M. U.
,
Yaqoob
,
H.
,
Khan
,
L. A.
, and
Shahzad
,
M. W.
,
2021
, “
Exergoeconomic Optimization of a Forward Feed Multi-effect Desalination System With and Without Energy Recovery
,”
Desalination
,
499
(
56
), p.
114808
.
35.
Ahmadi
,
F.
,
Khir
,
T.
,
Khalifa
,
N.
, and
Ben Brahim
,
A.
,
2017
, “
Performances of PV Systems in Tunisia: Establishment of New Database
,”
Int. J. Renew. Energy Res.
,
7
(
3
), pp.
1195
1204
.
36.
Hasan
,
Y.
, and
Mecit
,
S.
,
2017
, “
Exergy Analysis of a Vacuum Tube Solar Collector System Having Indirect Working Principle
,”
Therm. Sci.
,
21
(
6
), pp.
2813
2825
.
You do not currently have access to this content.