Abstract

Concentrated solar power (CSP) plants need to monitor the surface slope error of thousands of heliostats with sub-milliradian accuracy. Large numbers of heliostats installed in harsh environments mean that measurement speed and durability are key design considerations for metrology systems. We present a compact, accurate, and high-speed heliostat slope error metrology system that is robust to the harsh environmental conditions at CSP plants. The system is composed of (1) grating embedded mirrors (GEMs), which have multiple different phase diffraction gratings written within a glass mirror substrate, and (2) a compact optical system, the diffractive auto-stigmatic Hartmann camera (DASHCam). Using focused ultrafast laser pulses, we write phase gratings within second-surface float glass mirror without damaging the reflective coating on the backside. The gratings direct a small fraction of incident light to non-specular directions, which the DASHCam senses from a virtual center of curvature to measure the mirror slopes at each grating patch. In a CSP plant, each heliostat mirror would be a GEM, and the DASHCam would rapidly measure slope and canting errors during heliostat manufacturing, installation, or operation. We fabricated 0.1 meter-diameter GEMs with 24 grating patches, built a prototype DASHCam system, and tested the system repeatability and accuracy by comparing against a Fizeau interferometer. Our results show, in a laboratory environment, 24μrad root mean square (RMS) measurement repeatability and 47μrad RMS accuracy, with single-shot image capture. The combination of GEMs and DASHCam is a promising metrology approach that could lead to improved optical accuracy of heliostats throughout their life cycle. This work serves as a proof of principle for this system.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Augustine
,
C.
,
Turchi
,
C.
,
Mehos
,
M.
, and
National Renewable Energy Laboratory
,
2021
,
The Role of Concentrating Solar-Thermal Technologies in a Decarbonized U.S. Grid
, Revised February 2022. ed. National Renewable Energy Laboratory, 9. Includes bibliographical references (pp.
61
66
).
2.
Laboratory
,
NRE
,
2021
, The Solar Futures Study. https://www.osti.gov/biblio/1820105.
3.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al.,
2022
, Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power. Report, National Renewable Energy Laboratory.
4.
Christian
,
J.
,
Moya
,
A.
,
Ho
,
C.
,
Andraka
,
C.
, and
Yuan
,
J.
,
2015
, “
Probabilistic Analysis to Quantify Optical Performance and Error Budgets for Next Generation Heliostats
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031014
.
5.
Harding
,
K.
,
2013
,
Optical Metrology Overview
, 1st ed.,
CRC Press
,
Boca Raton, FL
, p.
9
6.
März
,
T.
,
Prahl
,
C.
,
Ulmer
,
S.
,
Wilbert
,
S.
, and
Weber
,
C.
,
2011
, “
Validation of Two Optical Measurement Methods for the Qualification of the Shape Accuracy of Mirror Panels for Concentrating Solar Systems
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031022
.
7.
Little
,
C. Q.
,
Small
,
D. E.
, and
Yellowhair
,
J.
,
2022
, “
LIDAR for Heliostat Optical Error Assessment
,”
AIP Conf. Proc.
,
2445
(
1
), p.
120017
120017
8.
Monterreal
,
R.
,
Enrique
,
R.
, and
Fernàndez-Reche
,
J.
,
2017
, “
An Improved Methodology for Heliostat Testing and Evaluation at the Plataforma Solar De Almería
,”
AIP Conf. Proc.
,
1850
(
1
), p.
030036
.
9.
Pottler
,
K.
,
Lüpfert
,
E.
,
Johnston
,
G. H. G.
, and
Shortis
,
M. R.
,
2005
, “
Photogrammetry: A Powerful Tool for Geometric Analysis of Solar Concentrators and Their Components
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
94
101
.
10.
Fernàndez-Reche
,
J.
, and
Valenzuela
,
L.
,
2012
, “
Geometrical Assessment of Solar Concentrators Using Close-Range Photogrammetry
,”
Energy Proc.
,
30
, pp.
84
90
.
11.
Röger
,
M.
,
Prahl
,
C.
, and
Ulmer
,
S.
,
2010
, “
Heliostat Shape and Orientation by Edge Detection
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021002
.
12.
Ulmer
,
S.
,
Heller
,
P.
, and
Reinalter
,
W.
,
2008
, “
Slope Measurements of Parabolic Dish Concentrators Using Color-Coded Targets
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
011015
.
13.
Klimek
,
J.
,
Sauerborn
,
M.
,
Hoffschmidt
,
B.
,
Sieger
,
S.
,
Biegel
,
G.
,
Essen
,
H.
,
Göttsche
,
J.
, and
Hilger
,
P.
,
2012
, “
Radar Technology for Heliostat Position Control
,”
SolarPACES Conference
,
Marrakech, Morocco
,
Sept. 11–14
.
14.
Ulmer
,
S.
,
März
,
T.
,
Prahl
,
C.
,
Reinalter
,
W.
, and
Belhomme
,
B.
,
2011
, “
Automated High Resolution Measurement of Heliostat Slope Errors
,”
Sol. Energy
,
85
(
4
), pp.
681
687
.
15.
Andraka
,
C. E.
,
Sadlon
,
S.
,
Myer
,
B.
,
Trapeznikov
,
K.
, and
Liebner
,
C.
,
2014
, “
Rapid Reflective Facet Characterization Using Fringe Reflection Techniques
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011002
.
16.
Weber
,
C.
,
Ulmer
,
S.
, and
Koch
,
H.
,
2014
, “
Enhancements in High-Resolution Slope Deviation Measurement of Solar Concentrator Mirrors
,”
Energy Proc.
,
49
, pp.
2231
2240
.
17.
Mitchell
,
R. A.
, and
Zhu
,
G.
,
2020
, “
A Non-Intrusive Optical (NIO) Approach to Characterize Heliostats in Utility-Scale Power Tower Plants: Sensitivity Study
,”
Sol. Energy
,
207
(
2
), pp.
450
457
.
18.
Arqueros
,
F.
,
Jiménez
,
A.
, and
Valverde
,
A.
,
2003
, “
A Novel Procedure for the Optical Characterization of Solar Concentrators
,”
Sol. Energy
,
75
(
2
), pp.
135
142
.
19.
Coquand
,
M.
,
Caliot
,
C.
, and
Hénault
,
F.
,
2017
, “
Backward-Gazing Method for Heliostats Shape Errors Measurement and Calibration
,”
AIP Conf. Proc.
,
1850
(
1
), p.
030010
.
20.
Su
,
P.
,
Parks
,
R. E.
,
Wang
,
L.
,
Angel
,
R. P.
, and
Burge
,
J. H.
,
2010
, “
Software Configurable Optical Test System: A Computerized Reverse Hartmann Test
,”
Appl. Opt.
,
49
(
23
), pp.
4404
4412
.
21.
Yellowhair
,
J.
,
Apostolopoulos
,
P. A.
,
Small
,
D. E.
,
Novick
,
D.
, and
Mann
,
M.
,
2022
, “
Development of an Aerial Imaging System for Heliostat Canting Assessments
,”
AIP Conf. Proc.
,
2445
(
1
), p.
120024
.
22.
Kesseli
,
D.
,
Chidurala
,
V.
,
Gooch
,
R.
, and
Zhu
,
G.
,
2023
, “
A Combined Computer Vision and Deep Learning Approach for Rapid Drone-Based Optical Characterization of Parabolic Troughs
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021008
.
23.
Hénault
,
F.
,
Caliot
,
C.
,
Coquand
,
M.
,
Defieux
,
P.-H.
, and
Guillot
,
E.
,
2020
, “
Sun Backward Gazing Method for Measuring Optomechanical Errors of Solar Concentrators: Experimental Results
,”
Appl. Opt.
,
59
(
31
), pp.
9861
9877
.
24.
Parks
,
R. E.
,
2015
, “
Autostigmatic Microscope and How It Works
,”
Appl. Opt.
,
54
(
6
), pp.
1436
1438
.
25.
Fernández-García
,
A.
,
Álvarez Rodrigo
,
L.
,
Martínez-Arcos
,
L.
,
Aguiar
,
R.
, and
Màrquez-Payés
,
J.
,
2014
, “
Study of Different Cleaning Methods for Solar Reflectors Used in CSP Plants
,”
Energy Proc.
,
49
, pp.
80
89
.
26.
Berg
,
R. S.
,
1978
,
Heliostat Dust Buildup and Cleaning Studies
,
Sandia National Laboratory
,
Albuquerque, NM
.
27.
Davis
,
K. M.
,
Miura
,
K.
,
Sugimoto
,
N.
, and
Hirao
,
K.
,
1996
, “
Writing Waveguides in Glass With a Femtosecond Laser
,”
Opt. Lett.
,
21
(
21
), pp.
1729
1731
.
28.
Glassner
,
A. S.
,
1989
,
An Introduction to Ray Tracing
,
Morgan Kaufmann
,
Burlington, MA
.
29.
Haines
,
E.
,
2021
,
Reflection and Refraction Formulas
,
Apress
,
Berkeley, CA
, pp.
105
108
30.
Greivenkamp
,
J. E.
,
2004
,
Field Guide to Geometrical Optics
,
SPIE
,
Bellingham, WA
.
31.
Baker
,
K. L.
, and
Moallem
,
M. M.
,
2007
, “
Iteratively Weighted Centroiding for Shack-Hartmann Wave-Front Sensors
,”
Opt. Expr.
,
15
(
8
), pp.
5147
5159
.
32.
Smith
,
G. A.
,
Lewis
,
B. J.
,
Palmer
,
M.
,
Kim
,
D. W.
,
Loeff
,
A. R.
, and
Burge
,
J. H.
,
2012
, “Open Source Data Analysis and Visualization Software for Optical Engineering.” In Novel Optical Systems Design and Optimization XV,
G. G.
Gregory
and
A. J.
Davis
, eds., Vol.
8487
,
International Society for Optics and Photonics, SPIE
, p.
84870F
.
You do not currently have access to this content.