Abstract

In this work, a novel solar double-effect absorption combined cooling and power (DECCP) system with an adjustable cooling-to-power ratio is proposed. This cogeneration system uses water–LiBr as the working fluid. The novel cycle upon which this system is based has been mathematically modeled, simulated, and parametrically analyzed to generate the system’s performance characteristics for several scenarios. The performance has been compared with those of other similar combined cogeneration cycles. It was found that the proposed cycle outperforms the other cycles from the vantage point of the power produced and the cycle’s ability to produce cooling. For specific operating parameters, the DECCP cycle achieves an exergetic efficiency that varies between 36.55% and 59.13% based on the refrigerant split ratio used. An effective operating strategy is proposed for the cycle when it is powered by solar energy.

References

1.
Eras
,
J.J.C.
,
Gutiérrez
,
A.S.
,
Lorenzo
,
D.G.
,
Martínez
,
J.B.C.
,
Hens
,
L.
, and
Vandecasteele
,
C.
,
2015
, “
Bridging Universities and Industry Through Cleaner Production Activities. Experiences From the Cleaner Production Center at the University of Cienfuegos, Cuba
,”
J. Cleaner Prod.
,
108A
, pp.
873
882
.
2.
Novotny
,
V.
,
Szucs
,
D.J.
,
Špale
,
J.
,
Tsai
,
H.
, and
Kolovratnik
,
M.
,
2021
, “
Absorption Power and Cooling Combined Cycle With an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration
,”
Energies
,
14
(
12
), p.
3715
.
3.
Shankar
,
R.
, and
Srinivas
,
T.
,
2016
, “
Options in Kalina Cycle Systems
,”
Energy Procedia
,
90
, pp.
260
266
.
4.
International Energy Agency (IEA)
,
2018
,
The Future of Cooling Opportunities for Energy Efficient Air Conditioning
,
OECD Publishing
,
Paris, France
.
5.
Ayou
,
D.S.
,
Bruno
,
J.C.
, and
Coronas
,
A.
,
2017
, “
Integration of a Mechanical and Thermal Compressor Booster in Combined Absorption Power and Refrigeration Cycles
,”
Energy
,
135
, pp.
327
341
.
6.
Ayou
,
D.S.
,
Bruno
,
J.C.
,
Saravanan
,
R.
, and
Coronas
,
A.
,
2013
, “
An Overview of Combined Absorption Power and Cooling Cycles
,”
Renew. Sustain. Energy Rev.
,
21
, pp.
728
748
.
7.
Novotny
,
V.
,
Kolovratnik
,
M.
,
Vitvarova
,
M.
, and
Jakobsen
,
J.
,
2016
, “
Analysis and Design of Novel Absorption Power Cycle Plants
,”
10th International Conference on Energy Sustainability
,
Charlotte, NC
,
June 26–30
,
Paper No. ES2016-59272, p. V001T13A005
.
8.
Novotnỳ
,
V.
,
Szucs
,
D.
,
Spale
,
J.
,
Vodicka
,
V.
,
Mascuch
,
J.
, and
Kolovratník
,
M.
,
2019
, “
Absorption Power Cycle With LiBr Solution Working Fluid—Design of the Proof-of-Concept Unit
,”
Proceedings of the 5th International Seminar on ORC Power Systems
,
Athens, Greece
,
Sept. 9–11
.
9.
Bianchi
,
M.
, and
De Pascale
,
A.
,
2011
, “
Bottoming Cycles for Electric Energy Generation: Parametric Investigation of Available and Innovative Solutions for the Exploitation of Low and Medium Temperature Heat Sources
,”
Appl. Energy
,
88
(
5
), pp.
1500
1509
.
10.
Pierobon
,
L.
, and
Haglind
,
F.
,
2014
, “
Design and Optimization of Air Bottoming Cycles for Waste Heat Recovery in Off-Shore Platforms
,”
Appl. Energy
,
118
, pp.
156
165
.
11.
Chan
,
C.W.
,
Ling-Chin
,
J.
, and
Roskilly
,
A.P.
,
2013
, “
A Review of Chemical Heat Pumps, Thermodynamic Cycles and Thermal Energy Storage Technologies for Low Grade Heat Utilisation
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1257
1273
.
12.
Johnson
,
I
,
Choate
,
W.
, and
Davidson
,
A.
,
2008
, “
Waste Heat Recovery: Technology Opportunities in the US Industry
,” United States, https://www.osti.gov/servlets/purl/1218716
13.
Garcia-Hernando
,
N.
,
de Vega
,
M.
,
Soria-Verdugo
,
A.
, and
Sanchez-Delgado
,
S.
,
2013
, “
Energy and Exergy Analysis of an Absorption Power Cycle
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
69
77
.
14.
Martin
,
C.
, and
Goswami
,
D.Y.
,
2006
, “
Effectiveness of Cooling Production With a Combined Power and Cooling Thermodynamic Cycle
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
576
582
.
15.
Kalina
,
A.I.
,
1983
, “
Combined Cycle and Waste Heat Recovery Power Systems Based on a Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power Generation
,”
Joint Power Generation Conference: GT Papers
,
Indianapolis, IN
,
Sept. 25–29
,
ASME Paper No. 83-JPGC-GT-3
, pp.
1
5
.
16.
Pacheco-Reyes
,
A.
, and
Rivera
,
W.
,
2021
, “
Thermodynamic Cycles for the Simultaneous Production of Power and Cooling: A Comprehensive Review
,”
Int. J. Energy Res.
,
45
(
9
), pp.
12500
12535
.
17.
Deng
,
J.
,
Wang
,
R.
, and
Han
,
G.
,
2011
, “
A Review of Thermally Activated Cooling Technologies for Combined Cooling, Heating and Power Systems
,”
Prog. Energy Combust. Sci.
,
37
(
2
), pp.
172
203
.
18.
Chaiyat
,
N.
, and
Kiatsiriroat
,
T.
,
2015
, “
Analysis of Combined Cooling Heating and Power Generation from Organic Rankine Cycle and Absorption System
,”
Energy
,
91
, pp.
363
370
.
19.
Talukdar
,
K.
, and
Gogoi
,
T.K.
,
2016
, “
Exergy Analysis of a Combined Vapor Power Cycle and Boiler Flue Gas Driven Double Effect Water–LiBr Absorption Refrigeration System
,”
Energy Convers. Manage.
,
108
, pp.
468
477
.
20.
Rogdakis
,
E.D.
, and
Antonopoulos
,
K.A.
,
1991
, “
A High Efficiency NH3/H2O Absorption Power Cycle
,”
Heat Recov. Syst. CHP
,
11
(
4
), pp.
263
275
.
21.
Koremenos
,
D.
,
Rogdakis
,
E.
, and
Antonopoulos
,
K.
,
1994
, “Cogeneration With Combined Gas and Aqua-ammonia Absorption Cycles,”
Thermodynamics and the Design, Analysis, and Improvement of Energy Systems
, Vol.
33
,
R. J.
Krane
, ed.,
The American Society of Mechanical Engineers (ASME), AES Division
,
New York
, pp.
231
238
.
22.
Goswami
,
D.
,
1996
, “
Solar Thermal Power Technology: Present Status and Ideas for the Future
,”
Energy Sources J.
,
20
(
2
), pp.
137
145
.
23.
Xu
,
F.
,
Goswami
,
D.Y.
, and
Bhagwat
,
S.S.
,
2000
, “
A Combined Power/Cooling Cycle
,”
Energy
,
25
(
3
), pp.
233
246
.
24.
Vijayaraghavan
,
S.
, and
Goswami
,
D.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Res. Technol.
,
125
(
3
), pp.
221
227
.
25.
Sadrameli
,
S.M.
, and
Goswami
,
D.Y.
,
2007
, “
Optimum Operating Conditions for a Combined Power and Cooling Thermodynamic Cycle
,”
Appl. Energy
,
84
(
3
), pp.
254
265
.
26.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R.V.
,
Archibold
,
A.R.
,
Goswami
,
D.Y.
,
Rahman
,
M.M.
, and
Stefanakos
,
E.L.
,
2012
, “
Multi-objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Res. Technol.
,
134
(
3
), p.
032002
.
27.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Parametric Optimization of Vapor Power and Cooling Cycle
,”
Energy Procedia
,
54
, pp.
135
141
.
28.
López-Villada
,
J.
,
Ayou
,
D.
,
Bruno
,
J.
, and
Coronas
,
A.
,
2014
, “
Modelling, Simulation and Analysis of Solar Absorption Power-Cooling Systems
,”
Int. J. Refrig.
,
39
(
3
), pp.
125
136
.
29.
Rivera
,
W.
,
Sánchez-Sánchez
,
K.
,
Hernández-Magallanes
,
J.
,
Jiménez-García
,
J.
, and
Pacheco
,
A.
,
2020
, “
Modeling of Novel Thermodynamic Cycles to Produce Power and Cooling Simultaneously
,”
Processes
,
8
(
3
), p.
320
.
30.
Ziegler
,
F.
,
2007
, “
Novel Cycles for Power and Refrigeration
,”
1st European Conference on Polygeneration
,
Tarragona, Spain
,
Oct. 16–17
.
31.
Ventas
,
R.
,
Lecuona
,
A.
,
Vereda
,
C.
, and
Rodriguez-hidalgo
,
M.C.
,
2017
, “
Performance Analysis of an Absorption Double-Effect Cycle for Power and Cold Generation Using Ammonia/Lithium Nitrate
,”
Appl. Therm. Eng.
,
115
, pp.
256
266
.
32.
Patil
,
R.
, and
Bhagwat
,
S.
,
2021
, “
Thermodynamic Analysis and Optimisation of Double Effect Absorption Type Combined Power and Cooling Cycle Using LiBr–Water as Working Fluid
,”
Int. J. Exergy
,
34
(
2
), pp.
159
178
.
33.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina. Part 1: Simulation
,”
Energy Convers. Manage.
,
158
, pp.
437
459
.
34.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina. Part 2: Parametric Study and Optimization
,”
Energy Convers. Manage.
,
161
, pp.
74
103
.
35.
Vijayaraghavan
,
S.
, and
Goswami
,
D.Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Res. Technol.
,
127
(
2
), pp.
125
130
.
36.
Abed
,
H.
,
Atashkari
,
K.
,
Niazmehr
,
A.
, and
Jamali
,
A.
,
2013
, “
Thermodynamic Optimization of Combined Power and Refrigeration Cycle Using Binary Organic Working Fluid
,”
Int. J. Refrig.
,
36
(
8
), pp.
2160
2168
.
37.
Shankar
,
R.
,
Srinivas
,
T.
, and
Reddy
,
B.
,
2017
, “
Thermodynamic Evaluations of Solar Cooling Cogeneration Cycle Using NaSCN–NH3 Mixture
,”
Appl. Solar Energy
,
53
(
3
), pp.
267
275
.
38.
Novotny
,
V.
, and
Kolovratnik
,
M.
,
2017
, “
Absorption Power Cycles for Low-Temperature Heat Sources Using Aqueous Salt Solutions as Working Fluids
,”
Int. J. Energy Res.
,
41
(
7
), pp.
952
975
.
39.
Novotny
,
V.
,
Vodicka
,
V.
,
Mascucha
,
J.
, and
Kolovratnik
,
M.
,
2017
, “
Possibilities of Water-Lithium Bromide Absorption Power Cycles for Low Temperature, Low Power and Combined Power and Cooling Systems
,”
Energy Procedia
,
129
, pp.
818
825
.
40.
Vaclav
,
N.
,
Špale
,
J.
,
Suchna
,
D.
,
Pavlicko
,
J.
,
Kolovratnik
,
M.
, and
Weiß
,
A.
,
2021
, “
Absorption Power Cycle With a 3D-Printed Plastic Micro Turboexpander—Considerations, Design and First Experimental Results
,”
AIP Conf. Proc.
,
2323
(
070003
), pp.
1
9
.
41.
Khaliq
,
A.
,
Alharthi
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051003
.
42.
Naik
,
H.
,
Baredar
,
P.
, and
Kumar
,
A.
,
2017
, “
Medium Temperature Application of Concentrated Solar Thermal Technology: Indian Perspective
,”
Renew. Sustain. Energy Rev.
,
76
(
2017
), pp.
369
378
.
43.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Investigation on Operating Processes for a New Solar Cooling Cogeneration Plant
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031016
.
44.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2011
, “
A Review on Solar Energy Use in Industries
,”
Renew. Sustain. Energy Rev.
,
15
(
4
), pp.
1777
1790
.
45.
Goswami
,
D.
,
1998
, “
Solar Thermal Power Technology: Present Status and Ideas for the Future
,”
Energy Source.
,
20
(
2
), pp.
137
145
.
46.
Hasan
,
A.
, and
Goswami
,
D.
,
2003
, “
Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
55
60
.
47.
Lu
,
S.
, and
Goswami
,
D.
,
2003
, “
Optimization of a Novel Combined Power/Refrigeration Thermodynamic Cycle
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
212
217
.
48.
Wang
,
F.
,
Li
,
H.
,
Zhao
,
J.
,
Deng
,
S.
, and
Yan
,
J.
,
2016
, “
Technical and Economic Analysis of Integrating Low-Medium Temperature Solar Energy Into Power Plant
,”
Energy Convers. Manage.
,
112
, pp.
459
469
.
49.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
50.
Pátek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of the Thermodynamic Properties of LiBr–H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
51.
Lüpfert
,
E.
,
Zarza
,
E.
,
Geyer
,
M.
,
Nava
,
P.
,
Langenkamp
,
J.
,
Schiel
,
W.
,
Esteban
,
A.
,
Osuna
,
R.
, and
Mandelberg
,
E.
,
2003
, “
Euro Trough Collector Qualification Complete-Performance Test Results From PSA
,”
ISES Solar World Congress 2003 Proceedings
,
Köln-Porz, Germany
,
June 14–19
, pp.
1
7
.
52.
Geyer
,
M.
,
Lüpfert
,
E.
,
Osuna
,
R.
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava
,
P.
,
Langenkamp
,
J.
, and
Mandelberg
,
E.
,
2002
, “
EUROTROUGH-Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation
,”
11th International Symposium on Concentrating Solar Power and Chemical Energy Technologies
,
Zurich, Switzerland
,
Sept. 4–6
.
53.
ASHRAE
,
2009
,
ASHRAE Handbook: Fundamentals
(SI Edition),
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc
.,
Atlanta, GA
.
54.
Klein
,
S.
, and
Alvarda
,
S.
,
2007
,
Engineering Equation Solver (EES)
,
F-Chart Software
,
Madison, WI
.
55.
Garousi
,
L.G.
,
Mahmoudi
,
S.M.S.
,
Rosen
,
M.A.
,
Yari
,
M.
, and
Amidpour
,
M.
,
2013
, “
Exergoeconomic Analysis of Double Effect Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
65
, pp.
13
25
.
56.
Demirkaya
,
G.
,
Padilla
,
R.
,
Fontalvo
,
A.
,
Lake
,
M.
, and
Lim
,
Y.
,
2017
, “
Thermal and Exergetic Analysis of the Goswami Cycle Integrated With Mid-Grade Heat Sources
,”
Entropy
,
19
(
8
), pp.
1
24
.
57.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Development and Analysis of a New Integrated Power and Cooling Plant Using LiBr − H2O Mixture
,”
Sadhana Acad. Proc. Eng. Sci.
,
39
(
6
), pp.
1547
1562
.
58.
Herold
,
K.
,
Radermacher
,
R.
, and
Klein
,
S.
,
1996
,
Absorption Chillers and Heat Pumps
, 2nd ed.,
Taylor & Francis Group
,
Boca Raton, FL
.
59.
Tzivanidis
,
C.
,
Bellos
,
E.
,
Korres
,
D.
,
Antonopoulos
,
K.
, and
Mitsopoulos
,
G.
,
2015
, “
Thermal and Optical Efficiency Investigation of a Parabolic Trough Collector
,”
Case Stud. Thermal Eng.
,
6
(
2
), pp.
226
237
.
60.
Blanco
,
J.
,
Alarcón
,
D.
,
Sánchez
,
B.
,
Malato
,
S.
,
Maldonado
,
M. I.
,
Hublitz
,
A.
, and
Spinnler
,
M.
,
2003
, “
Technical Comparison of Different Solar-Assisted Heat Supply Systems for a Multi-Effect Seawater Distillation Unit
,”
ISES Solar World Congress
,
Göteborg, Sweden
,
June 14–19
.
61.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer-Trans. ASME
,
86
(
2
), pp.
187
192
.
62.
Sedighi
,
K.
,
Farhadi
,
M.
, and
Liaghi
,
M.
,
2007
, “
Exergy Analysis: Parametric Study on Lithium Bromide-Water Absorption Refrigeration Systems
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
221
(
11
), pp.
1345
1351
.
63.
BROAD U.S.A. INC
,
2018
,
Broad Xii Non-Electric Chiller Model Selection & Design Manual, https://www.lafivents.lv/assets/upload/userfiles/files/Absorption-chiller_CATALOG-1m.pdf
.
64.
Yin
,
H.
,
Qu
,
M.
, and
Archer
,
D.H.
,
2010
, “
Model Based Experimental Performance Analysis of a Microscale LiBr–H2O Steam-Driven Double-Effect Absorption Chiller
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1741
1750
.
65.
Weather Spark
,
2022
, “
Climate and Average Weather Year Round in Jeddah Saudi Arabia
,”
Minneapolis, MN
, https://weatherspark.com/y/101171/Average-Weather-in-Jeddah-Saudi-Arabia-Year-Round, Accessed 22, 2014.
66.
El-Sebaii
,
A.A.
,
Al-Ghamdi
,
A.A.
,
Al-Hazmi
,
F.S.
, and
Faidah
,
A.S.
,
2009
, “
Thermal Performance of a Single Basin Solar Still With PCM as a Storage Medium
,”
Appl. Energy
,
86
(
7–8
), pp.
1187
1195
.
You do not currently have access to this content.