Abstract

In this paper, a portable photovoltaic (PV)-powered vaccine carrier intended for “hard to reach” areas that suffer luck of electricity and transportation has been proposed. The design of the proposed system has been analyzed and each of its elements (PV panel, battery, converter, and refrigerator) has been deeply studied, modeled, and validated through simulation as well as experimentally. These elements are carefully selected to form a robust, light system and at a reasonable cost. To maximize energy production, the PV panel control using a maximum power point tracking (MPPT) controller has been examined. Moreover, to ensure an appropriate battery charging and thereby prolonging battery life, state of charge (SOC) estimation using the Luenberger observer has been studied. The proposed system has been investigated under different climatic conditions. It was subjected to different daily profiles of irradiance and temperature measured in three seasons, namely, winter, spring, and summer in Marrakesh, Morocco. As expected, for all studied cases, the proposed PV-powered vaccine carrier works adequately and maintains continuously a low temperature of 4 °C (as required by the World Health Organization (WHO) for vaccine preservation) for a journey of 15 h. These results making it a very suitable option to transport vaccines safely in remote areas.

References

1.
Global vaccine action plan 2011–2020—World Health Organization
,
May
2012
.
2.
Immunization Coverage, World Health Organization (WHO)
,
Fact sheet No. 378
, Date:
July
16
,
2018
. Accessed May 19, 2019.
3.
McCarney
,
S.
,
Robertson
,
J.
,
Arnaud
,
J.
,
Lorenson
,
K.
, and
Lloyd
,
J.
,
2013
, “
Using Solar-Powered Refrigeration for Vaccine Storage Where Other Sources of Reliable Electricity are Inadequate or Costly
,”
Vaccine
31
(
51
), pp.
6050
6057
.10.1016/j.vaccine.2013.07.076
4.
Chiodini
,
J.
,
2014
, “
Safe Storage and Handling of Vaccines
,”
Nursing Standard
,
28
(
25
), pp.
45
52
. 10.7748/ns2014.02.28.25.45.e8486
5.
Procurement Guidelines: Vaccine Carriers and Cold Boxes, UNICEF
,
2016
.
6.
Ashok
,
A.
,
Brison
,
M.
, and
LeTallec
,
Y.
,
2017
, “
Improving Cold Chain Systems: Challenges and Solutions
,”
Vaccine
,
35
(
17
), pp.
2217
2223
.10.1016/j.vaccine.2016.08.045
7.
World Map of Global Horizontal Irradiation, SolarGIS
2013
.
8.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2013
, “
Review of Solar Refrigeration and Cooling Systems
,”
Energy Build.
,
67
, pp.
286
297
. 10.1016/j.enbuild.2013.08.022
9.
Allouhia
,
A.
,
Kousksoub
,
T.
,
Jamila
,
A.
,
Bruelc
,
P.
,
Mourada
,
Y.
, and
Zeraouli
,
Y.
,
2015
, “
Solar Driven Cooling Systems: An Updated Review
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
159
181
. 10.1016/j.rser.2014.12.014
10.
Daghigh
,
R.
, and
Khaledian
,
Y.
,
2018
, “
Effective Design, Theoretical and Experimental Assessment of a Solar Thermoelectric Cooling-Heating System
,”
Sol. Energy
,
162
, pp.
561
572
. 10.1016/j.solener.2018.01.012
11.
Dai
,
Y. J.
,
Wang
,
R. Z.
, and
Ni
,
L.
,
2003
, “
Experimental Investigation on a Thermoelectric Refrigerator Driven by Solar Cells
,”
Renewable Energy
,
28
(
6
), pp.
949
959
.10.1016/S0960-1481(02)00055-1
12.
Attavane
,
P.
,
Arjun
,
G. B.
,
Radhakrishna
,
R.
, and
Jadav
,
S. R.
,
2017
, “
Solar Powered Portable Food Warmer and Cooler Based on Peltier Effect
,”
Second IEEE International Conference on Recent Trends in Electronics Information & Communication Technology (RTEICT)
,
India
,
May 19–20
.
13.
Allouhi
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
,
Agrouaz
,
Y.
,
Bouhal
,
T.
,
Saidur
,
R.
, and
Benbassou
,
A.
,
2016
, “
Performance Evaluation of Solar Adsorption Cooling Systems for Vaccine Preservation in Sub-Saharan Africa
,”
Appl. Energy
,
170
, pp.
232
241
. 10.1016/j.apenergy.2016.02.123
14.
Aktacir
,
M. A.
,
2011
, “
Experimental Study of a Multi-Purpose PV-Refrigerator System
,”
Int. J. Phys. Sci.
,
6
(
4
), pp.
746
757
.
15.
Modi
,
A.
,
Chaudhuri
,
A.
,
Vijay
,
B.
, and
Mathur
,
J.
,
2009
, “
Performance Analysis of a Solar Photovoltaic Operated Domestic Refrigerator
,”
Appl. Energy
,
86
(
12
), pp.
2583
2591
.10.1016/j.apenergy.2009.04.037
16.
Daffallah
,
K. O.
,
2018
, “
Experimental Study of 12 V and 24 V Photovoltaic DC Refrigerator at Different Operating Conditions
,”
Phys. B
,
545
, pp.
237
244
. 10.1016/j.physb.2018.06.027
17.
Opoku
,
R.
,
Anane
,
S.
,
Edwin
,
I. A.
,
Adaramola
,
M. S.
, and
Seidu
,
R.
,
2016
, “
Comparative Techno-Economic Assessment of a Converted DC Refrigerator and a Conventional AC Refrigerator Both Powered by Solar PV
,”
Int. J. Refrig.
,
72
, pp.
1
11
. 10.1016/j.ijrefrig.2016.08.014
18.
Tina
,
G. M.
, and
Grasso
,
A. D.
,
2014
, “
Remote Monitoring System for Stand-Alone Photovoltaic Power Plants: The Case Study of a PV-Powered Outdoor Refrigerator
,”
Energy Convers. Manage.
,
78
, pp.
862
871
. 10.1016/j.enconman.2013.08.065
19.
Verma
,
S. S.
,
2017
, “
New Forms of Solar Cells Poised for a Breakthrough
,”
Renewable Energy Akshay Urja
,
10
(
6
), pp.
28
32
.
20.
Väyrynen
,
A.
, and
Salminen
,
J.
,
2012
, “
Lithium ion Battery Production
,”
J. Chem. Thermodyn.
,
46
, pp.
80
85
. 10.1016/j.jct.2011.09.005
21.
Taghvaee
,
M. H.
,
Radzi
,
M. A. M.
,
Moravian
,
S. M.
,
Hizam
,
H.
, and
Marhaban
,
M. H.
,
2013
, “
A Current and Future Study on non-Isolated DC–DC Converters for Photovoltaic Applications
,”
Renewable Sustainable Energy Rev.
,
17
, pp.
216
227
. 10.1016/j.rser.2012.09.023
22.
Feng
,
X.
,
Qing
,
X.
,
Chung
,
C. Y.
,
Qiao
,
H.
,
Wang
,
X.
, and
Zhao
,
X.
,
2016
, “
A Simple Parameter Estimation Approach to Modeling of Photovoltaic Modules Based on Datasheet Values
,”
ASME J. Sol. Energ. Eng
,
138
(
5
), p.
051010
.10.1115/1.4034357
23.
Bencherif
,
M.
, and
Brahmi
,
B. N.
,
2018
, “
Accurate Method for Loss Parameter Extraction of Solar Panels
,”
ASME J. Sol. Energ. Eng
,
140
(
2
), p.
021007
.10.1115/1.4038620
24.
Zhang
,
X.
,
Zhang
,
W.
, and
Lei
,
G.
,
2016
, “
A Review of Li-Ion Battery Equivalent Circuit Models
,”
Trans. Electr. Electron. Mater.
,
7
(
6
), pp.
311
316
.10.4313/TEEM.2016.17.6.311
25.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
. 10.1016/j.jpowsour.2011.10.013
26.
Rivera-Barrera
,
J.
,
Muñoz-Galeano
,
N.
, and
Sarmiento-Maldonado
,
H.
,
2017
, “
SoC Estimation for Lithium-Ion Batteries: Review and Future Challenges
,”
Electronics
,
6
(
4
), p.
102
.10.3390/electronics6040102
27.
Hu
,
X.
,
Sun
,
F.
, and
Zou
,
Y.
,
2013
, “
Comparison Between two Model-Based Algorithms for Li-Ion Battery SOC Estimation in Electric Vehicles
,”
Simul. Modell. Pract. Theory
,
34
, pp.
1
11
. 10.1016/j.simpat.2013.01.001
28.
Xu
,
J.
,
Mi
,
C. C.
,
Cao
,
B.
,
Deng
,
J.
,
Chen
,
Z.
, and
Li
,
S.
,
2014
, “
The State of Charge Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer
,”
IEEE Trans. Veh. Technol.
,
63
(
4
), pp.
1614
1621
.10.1109/TVT.2013.2287375
29.
Rahmoun
,
A.
, and
Biechl
,
H.
,
2012
, “
Modelling of Li-Ion Batteries Using Equivalent Circuit Diagrams
,”
Przeglad Elektrotechniczny (Electrical Review)
,
88
(
7b
), pp.
152
156
.
30.
Hu
,
X.
,
Sun
,
F.
, and
Zou
,
Y.
,
2010
, “
Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer
,”
Energies
,
3
(
9
), pp.
1586
1603
.10.3390/en3091586
31.
Abouadane
,
H.
,
Fakkar
,
A.
, and
Oukarfi
,
B.
,
2019
, “
Optimal Command for Photovoltaic Systems in Real Outdoor Weather Conditions
,”
ASME J. Sol. Energ. Eng.
,
142
(
1
), p.
011002
.10.1115/1.4044125
32.
Doubabi
,
H.
,
Chennani
,
M.
, and
Essounbouli
,
N.
,
2017
, “
Modeling and Design of Synchronous Buck Converter for Solar-Powered Refrigerator
,”
IEEE International Renewable and Sustainable Energy Conference
,
Tangier, Morocco
,
Dec. 4–7
.
33.
Lyden
,
S.
, and
Haque
,
M. E.
,
2015
, “
Maximum Power Point Tracking Techniques for Photovoltaic Systems: A Comprehensive Review and Comparative Analysis
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1504
1518
. 10.1016/j.rser.2015.07.172
34.
Ram
,
J. P.
,
Babu
,
T. S.
, and
Rajasekar
,
N.
,
2017
, “
A Comprehensive Review on Solar PV Maximum Power Point Tracking Techniques
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
826
847
. 10.1016/j.rser.2016.09.076
35.
Kovacevic
,
H.
, and
Stojanovic
,
Z.
,
2016
, “
Buck Converter Controlled by Arduino
,”
2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
,
Opatija, Croatia
,
May 30–June 3
.
You do not currently have access to this content.