This study presents an experimental nanoparticle synthesis and the numerical analysis of a parabolic trough collector (PTC) operating with olive leaf synthesized TiO2/water nanofluid. The PTC is modeled after the LS-2 collector for various operating conditions. An analysis of the heat transfer and entropy generation in the PTC is carried out based on the first and second laws of thermodynamics for various parameters of nanoparticle volumetric concentration (0 ≤ φ ≤ 8%), mass flow rate (0.1 ≤ m˙ ≤ 1.1 kg/s), and inlet temperatures (350–450 K) under turbulent flow regime. The effect of these parameters is evaluated on the Nusselt number, thermal losses, heat convection coefficient, outlet temperature, pressure drop, entropy generation rate, and Bejan number. The results show that the values of the Nusselt number decrease with higher concentrations of the nanoparticles. Also, the addition of nanoparticles increases the heat convection coefficient of the nanofluid compared to water. The thermal efficiency of the system is improved with the use of the new nanofluid by 0.27% at flow rates of 0.1 kg/s. The entropy generation study shows that increasing the concentration of nanoparticles considerably decreases the rate of entropy generation in the system. It is also observed that increasing the volumetric concentration of nanoparticles at low mass flow rates has minimal effect on the rate of entropy generation. Finally, a correlation that provides a value of mass flow rate that minimizes the entropy generation rate is also presented for each values of inlet temperature and nanoparticle volumetric concentration.

References

1.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes Solar Engineering
, John Wiley & Sons, Chicago, IL.
2.
Kalogirou
,
S.
,
2009
,
Solar Energy Engineering: Processes and Systems
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Ratlamwala
,
T. A.
, and
Abid
,
M.
,
2018
, “
Performance Analysis of Solar Assisted Multi-Effect Absorption Cooling Systems Using Nanofluids: A Comparative Analysis
,”
Int. J. Energy Res.
,
42
(
9
), pp.
2901
2915
.
4.
Edalatpour
,
M.
,
Aryana
,
K.
,
Kianifar
,
A.
,
Tiwari
,
G. N.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2016
, “
Solar Stills: A Review of the Latest Developments in Numerical Simulations
,”
Sol. Energy
,
135
, pp.
897
922
.
5.
Al-Sulaiman
,
F. A.
,
Hamdullahpur
,
F.
, and
Dincer
,
I.
,
2012
, “
Performance Assessment of a Novel System Using Parabolic Trough Solar Collectors for Combined Cooling, Heating, and Power Production
,”
Renewable Energy
,
48
, pp.
161
172
.
6.
Güven
,
H. M.
, and
Bannerot
,
R. B.
,
1986
, “
Determination of Error Tolerances for the Optical Design of Parabolic Troughs for Developing Countries
,”
Sol. Energy
,
36
(
6
), pp.
535
550
.
7.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
Numerical Investigation of Entropy Generation in a Parabolic Trough Receiver at Different Concentration Ratios
,”
Energy
,
53
, pp.
114
127
.
8.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Multi-Criteria Evaluation of Parabolic Trough Collector With Internally Finned Absorbers
,”
Appl. Energy
,
205
, pp.
540
561
.
9.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
, pp.
125
141
.
10.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051009
.
11.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
.
12.
Minea
,
A. A.
, and
El-Maghlany
,
W. M.
,
2018
, “
Influence of Hybrid Nanofluids on the Performance of Parabolic Trough Collectors in Solar Thermal Systems: Recent Findings and Numerical Comparison
,”
Renewable Energy
,
120
, pp.
350
364
.
13.
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Demirkaya
,
G.
,
Martinez
,
A.
, and
Quiroga
,
A. G.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
579
586
.
14.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
A Detailed Exergetic Analysis of Parabolic Trough Collectors
,”
Energy Convers. Manag.
,
149
, pp.
275
292
.
15.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Effects of Synthetic Oil Nanofluids and Absorber Geometries on the Exergetic Performance of the Parabolic Trough Collector
,”
Int. J. Energy Res.
,
42
(
11
), pp.
3559
3574
.
16.
Colangelo
,
G.
,
Milanese
,
M.
, and
De Risi
,
A.
,
2016
, “
Numerical Simulation of Thermal Efficiency of an Innovative Al2O3 Nanofluid Solar Thermal Collector: Influence of Nanoparticles Concentration
,”
Therm. Sci.
,
21
(
6
), pp.
2769
2779
.
17.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
.
18.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Parametric Investigation of Nanofluids in Parabolic Trough Collectors
,”
Therm. Sci. Eng. Prog.
,
127
, pp.
736
747
.
19.
Colangelo
,
G.
,
Favale
,
E.
,
Miglietta
,
P.
,
Milanese
,
M.
, and
de Risi
,
A.
,
2016
, “
Thermal Conductivity, Viscosity and Stability of Al2O3-Diathermic Oil Nanofluids for Solar Energy Systems
,”
Energy
,
95
, pp.
124
136
.
20.
Iacobazzi
,
F.
,
Milanese
,
M.
,
Colangelo
,
G.
,
Lomascolo
,
M.
, and
de Risi
,
A.
,
2016
, “
An Explanation of the Al2O3 nanofluid Thermal Conductivity Based on the Phonon Theory of Liquid
,”
Energy
,
116A
, pp.
786
794
.
21.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
22.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
.
23.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.
24.
Milanese
,
M.
,
Colangelo
,
G.
,
Cretì
,
A.
,
Lomascolo
,
M.
,
Iacobazzi
,
F.
, and
De Risi
,
A.
,
2016
, “
Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power systems—Part II: ZnO, CeO2, Fe2O3 Nanoparticles Behavior
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
321
326
.
25.
Milanese
,
M.
,
Colangelo
,
G.
,
Cretì
,
A.
,
Lomascolo
,
M.
,
Iacobazzi
,
F.
, and
De Risi
,
A.
,
2016
, “
Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power Systems—Part I: Water-Based Nanofluids Behavior
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
315
320
.
26.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-550-34169
.http://fac.ksu.edu.sa/sites/default/files/34169.pdf
27.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
R. A.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,” Report No.
SAND--94-1884
.http://large.stanford.edu/publications/coal/references/troughnet/solarfield/docs/segs_ls2_solar_collector.pdf
28.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2016
, “
Heat Transfer and Entropy Generation in a Parabolic Trough Receiver With Wall-Detached Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
99
, pp.
238
257
.
29.
Charjouei Moghadam
,
M.
,
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041011
.
30.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol®VP-1 Nanofluid
,”
Energy Convers. Manag.
,
120
, pp.
449
465
.
31.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
32.
Okonkwo
,
E. C.
,
Essien
,
E. A.
,
Akhayere
,
E.
,
Abid
,
M.
,
Kavaz
,
D.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Thermal Performance Analysis of a Parabolic Trough Collector Using Water-Based Green-Synthesized Nanofluids
,”
Sol. Energy
,
170
, pp.
658
670
.
33.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.
34.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transf.
,
78
, pp.
64
75
.
35.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2015
, “
Thermodynamic Optimisation of the Performance of a Parabolic Trough Receiver Using Synthetic Oil–Al2O3 Nanofluid
,”
Appl. Energy
,
156
, pp.
398
412
.
36.
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Thermal-Hydraulic Characteristics and Exergy Performance in Tube-on-Sheet Flat Plate Solar Collectors: Effects of Nanofluids and Mixed Convection
,”
Int. J. Therm. Sci.
,
118
, pp.
397
409
.
37.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4410
4428
.
38.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
39.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manag.
,
106
, pp.
268
281
.
You do not currently have access to this content.