This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥20 MPa) and high temperature (≥700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytic hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability, and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kWt shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.

References

1.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
.
2.
Turchi
,
C. S.
,
Ma
,
Z. W.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
3.
Wright
,
S. A.
,
Pickard
,
P. S.
,
Fuller
,
R.
,
Radel
,
R. F.
, and
Vernon
,
M. E.
,
2009
, “
Supercritical Co(2) Brayton Cycle Power Generation Development Program and Initial Test Results
,”
ASME
Paper No. POWER2009-81081.
4.
Ho
,
C. K.
,
Conboy
,
T.
,
Ortega
,
J.
,
Afrin
,
S.
,
Gray
,
A.
,
Christian
,
J. M.
,
Bandyopadyay
,
S.
,
Kedare
,
S. B.
,
Singh
,
S.
, and
Wani
,
P.
,
2014
, “
High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles
,”
ASME
Paper No. ES2014-6328.
5.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.
6.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Energy Procedia
,
49
, pp.
398
407
.
7.
Bradshaw
,
R. W.
, and
Meeker
,
D. E.
,
1990
, “
High-Temperature Stability of Ternary Nitrate Molten-Salts for Solar Thermal-Energy Systems
,”
Sol. Energy Mater.
,
21
(
1
), pp.
51
60
.
8.
Ho
,
C. K.
,
2017
, “
Advances in Central Receivers for Concentrating Solar Applications
,”
Sol. Energy
,
152
, pp.
38
56
.
9.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
Energy Procedia
,
69
, pp.
748
757
.
10.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2017
, “
Heat Transfer Models of Moving Packed-Bed Particle-to-Sco2 Heat Exchangers
,”
ASME
Paper No. ES2017-3377.
11.
Watkins
,
M. F.
, and
Gould
,
R. D.
,
2017
, “
Heat Transfer to Vertical Dense Granular Flows at High Operating Temperatures
,”
ASME
Paper No. ES2017-3272.
12.
Ma
,
Z. W.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), pp. 031014-1–031014-9.
13.
Ma
,
Z. W.
, and
Martinek
,
J.
,
2017
, “
Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-Co2 Heat Exchanger
,”
ASME
Paper No. ES2017-3098.
14.
Ho
,
C. K.
,
Carlson
,
M.
,
Garg
,
P.
, and
Kumar
,
P.
,
2016
, “
Technoeconomic Analysis of Alternative Solarized s-CO2 Brayton Cycle Configurations
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p. 051008.
15.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p. 021011.
16.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Jeter
,
S.
,
Golob
,
M.
,
Abdel-Khalik
,
S. I.
,
Nguyen
,
C.
, and
Al-Ansary
,
H.
,
2016
, “
On-Sun Testing of an Advanced Falling Particle Receiver System
,”
AIP Conf. Proc.
,
1734
(
1
), p. 030022.
17.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
, pp.
1015
1023
.
18.
Carlson
,
M. D.
,
Middleton
,
B. M.
, and
Ho
,
C. K.
,
2017
, “
Techno-Economic Comparison of Solar-Driven Sco2 Brayton Cycles Using Component Cost Models Baselined With Vendor Data and Estimates
,”
ASME
Paper No. ES2017-3590.
19.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J. L.
,
Boissiere
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2014
, “
A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes
,”
Energy Procedia
,
49
, pp.
617
626
.
20.
Siegel
,
N. P.
,
Gross
,
M. D.
, and
Coury
,
R.
,
2015
, “
The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041003
.
21.
Mills
,
D.
,
2016
,
Pneumatic Conveying Design Guide
, 3rd ed.,
Elsevier
,
Waltham, MA
.
22.
Saaty
,
T. L.
,
1980
,
The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation
,
McGraw-Hill International Book
,
New York
, p.
287
.
23.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2017
, “
High-Temperature Flow Testing and Heat Transfer for a Moving Packed-Bed Particle/sCO2 Heat Exchanger
,”
AIP Conf. Proc.
,
2033
(
1
), p. 040003.
You do not currently have access to this content.