Major new metropolitan centers experience challenges during management of peak electrical loads, typically occurring during extreme summer events. These peak loads expose the reliability of the electrical grid on the production and transmission side, while customers may incur considerable charges from increased metered peak demand, failing to meet demand response program obligations, or both. These challenges create a need for analytical tools that can inform building managers and utilities about near future conditions so they are better able to avoid peak demand charges and reduce building operational costs. In this article, we report on a tool and methodology to forecast peak loads at the city scale using New York City (NYC) as a test case. The city of New York experiences peak electric demand loads that reach up to 11 GW during the summertime, and are projected to increase to over 12 GW by 2025, as reported by the New York Independent System Operator (NYISO). The energy forecast is based on the Weather Research and Forecast (WRF) model version 3.5, coupled with a multilayer building energy model (BEM). Urban morphology parameters are assimilated from the New York Primary Land Use Tax-Lot Output (PLUTO), while the weather component of the model is initialized daily from the North American Mesoscale (NAM) model. A city-scale analysis is centered in the summer months of June–July 2015 which included an extreme heat event (i.e., heat wave). The 24-h city-scale weather and energy forecasts show good agreement with the archived data from both weather stations records and energy records by NYISO. This work also presents an exploration of space cooling savings from the use of white roofs as an application of the city-scale energy demand model.

References

1.
Hayhoe
,
K.
,
Wake
,
C.
,
Anderson
,
B.
,
Liang
,
X.-Z.
,
Maurer
,
E.
,
Zhu
,
J.
,
Bradbury
,
J.
,
DeGaetano
,
A.
,
Stoner
,
A. M.
, and
Wuebbles
,
D.
,
2008
, “
Regional Climate Change Projections for the Northeast USA
,”
Mitigation Adapt. Strategies Global Change
,
13
(
5–6
), pp.
425
436
.
2.
Sailor
,
D. J.
,
2001
, “
Relating Residential and Commercial Sector Electricity Loads to Climate—Evaluating State Level Sensitivities and Vulnerabilities
,”
Energy
,
26
(
7
), pp.
645
657
.
3.
Amato
,
A. D.
,
Ruth
,
M.
,
Kirshen
,
P.
, and
Horwitz
,
J.
,
2005
, “
Regional Energy Demand Responses to Climate Change: Methodology and Application to the Commonwealth of Massachusetts
,”
Clim. Change
,
71
(
1–2
), pp.
175
201
.
4.
Hadley
,
S. W.
,
Erickson
,
D. J.
,
Hernandez
,
J. L.
,
Broniak
,
C. T.
, and
Blasing
,
T. J.
,
2006
, “
Responses of Energy Use to Climate Change: A Climate Modeling Study
,”
Geophys. Res. Lett.
,
33
(
17
), p.
L17703
.
5.
Gao
,
Y.
,
Fu
,
J. S.
,
Drake
,
J. B.
,
Liu
,
Y.
, and
Lamarque
,
J.-F.
,
2012
, “
Projected Changes of Extreme Weather Events in the Eastern United States Based on a High Resolution Climate Modeling System
,”
Environ. Res. Lett.
,
7
(
4
), p.
044025
.
6.
U.S. Census Bureau, 2010, “
United States by Places and (in Selected States) County Subdivisions With 50,000 or More Population
,” American FactFinder, Census 2010 Summary File 1, accessed Oct. 9, 2016, available: http://www.census.gov/2010census/
7.
Santamouris
,
M.
,
Papanikolaou
,
N.
,
Livada
,
I.
,
Koronakis
,
I.
,
Georgakis
,
C.
,
Argiriou
,
A.
, and
Assimakopoulos
,
D.
,
2001
, “
On the Impact of Urban Climate on the Energy Consumption of Buildings
,”
Sol. Energy
,
70
(
3
), pp.
201
216
.
8.
Akbari
,
H.
,
Davis
,
S.
,
Huang
,
J.
,
Dorsano
,
S.
, and
Winnett
,
S.
,
1992
,
Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing
,
Lawrence Berkeley Lab., Berkeley, CA/Climate Change Div., Environmental Protection Agency
,
Washington, DC
.
9.
Zhao
,
H.
, and
Magoulès
,
F.
,
2012
, “
A Review on the Prediction of Building Energy Consumption
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
3586
3592
.
10.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
,
Wang
,
M.
, and
Svoma
,
B. M.
,
2013
, “
Assessing Summertime Urban Air Conditioning consumption in a Semiarid Environment
,”
Environ. Res. Lett.
,
8
(
3
), p.
034022
.
11.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Martilli
,
A.
,
2016
, “
Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand
,”
Boundary-Layer Meteorol.
,
161
(
1
), pp.
203
221
.
12.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2012
, “
A Resistance-Capacitance Network Model for the Analysis of the Interactions Between the Energy Performance of Buildings and the Urban Climate
,”
Build. Environ.
,
54
, pp.
116
125
.
13.
Gracik
,
S.
,
Heidarinejad
,
M.
,
Liu
,
J.
, and
Srebric
,
J.
,
2015
, “
Effect of Urban Neighborhoods on the Performance of Building Cooling Systems
,”
Build. Environ.
,
90
, pp.
15
29
.
14.
Crawley
,
D. B.
,
Hand
,
J. W.
,
Kummert
,
M.
, and
Griffith
,
B. T.
,
2008
, “
Contrasting the Capabilities of Building Energy Performance Simulation Programs
,”
Build. Environ.
,
43
(
4
), pp.
661
673
.
15.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Winkelmann
,
F. C.
,
Buhl
,
W. F.
,
Huang
,
Y. J.
,
Pedersen
,
C. O.
,
Strand
,
R. K.
,
Liesen
,
R. J.
,
Fisher
,
D. E.
,
Witte
,
M. J.
, and
Glazer
,
J.
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
.
16.
Hirsch
,
J. J.
,
2006
, “
eQuest, The QUick Energy Simulation Tool
,”
DOE2 Com
, epub, http://www.doe2.com/equest/.
17.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2011
, “
Combining a Detailed Building Energy Model With a Physically-Based Urban Canopy Model
,”
Boundary-Layer Meteorol.
,
140
(
3
), pp.
471
489
.
18.
Bauer
,
M.
, and
Scartezzini
,
J.-L.
,
1998
, “
A Simplified Correlation Method Accounting for Heating and Cooling Loads in Energy-Efficient Buildings
,”
Energy Build.
,
27
(
2
), pp.
147
154
.
19.
Lam
,
J. C.
,
Wan
,
K. K. W.
,
Wong
,
S. L.
, and
Lam
,
T. N. T.
,
2010
, “
Principal Component Analysis and Long-Term Building Energy Simulation Correlation
,”
Energy Convers. Manage.
,
51
(
1
), pp.
135
139
.
20.
Park
,
D. C.
,
El-Sharkawi
,
M. A.
,
Marks
,
R. J.
,
Atlas
,
L. E.
, and
Damborg
,
M. J.
,
1991
, “
Electric Load Forecasting Using an Artificial Neural Network
,”
IEEE Trans. Power Syst.
,
6
(
2
), pp.
442
449
.
21.
Neto
,
A. H.
, and
Fiorelli
,
F. A. S.
,
2008
, “
Comparison Between Detailed Model Simulation and Artificial Neural Network for Forecasting Building Energy Consumption
,”
Energy Build.
,
40
(
12
), pp.
2169
2176
.
22.
Orehounig
,
K.
,
Evins
,
R.
,
Dorer
,
V.
, and
Carmeliet
,
J.
,
2014
, “
Assessment of Renewable Energy Integration for a Village Using the Energy Hub Concept
,”
Energy Procedia
,
57
, pp.
940
949
.
23.
Tibana
,
Y.
,
Gutierrez
,
E.
,
Arend
,
M.
, and
Gonzalez
,
J. E.
,
2015
, “
Building Peak Load Management With High Resolution Weather Data
,”
ASME
Paper No. ES2015-49233.
24.
Gutiérrez
,
E.
,
González
,
J. E.
,
Bornstein
,
R.
,
Arend
,
M.
, and
Martilli
,
A.
,
2013
, “
A New Modeling Approach to Forecast Building Energy Demands During Extreme Heat Events in Complex Cities
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
040906
.
25.
Skamarock
,
W.
,
Klemp
,
J.
,
Dudhia
,
J.
,
Gill
,
D.
,
Barker
,
D.
,
Wang
,
W.
,
Huang
,
X.
, and
Duda
,
M.
,
2008
, “
A Description of the Advanced Research WRF Version 3
,”
National Center for Atmospheric Research Boulder, CO
.
26.
Martilli
,
A.
,
Clappier
,
A.
, and
Rotach
,
M. W.
,
2002
, “
An Urban Surface Exchange Parameterisation for Mesoscale Models
,”
Boundary-Layer Meteorol.
,
104
(
2
), pp.
261
304
.
27.
Salamanca
,
F.
,
Krpo
,
A.
,
Martilli
,
A.
, and
Clappier
,
A.
,
2010
, “
A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations—Part I. Formulation, Verification, and Sensitivity Analysis of the Model
,”
Theor. Appl. Climatol.
,
99
(
3–4
), pp.
331
344
.
28.
Gutiérrez
,
E.
,
Martilli
,
A.
,
Santiago
,
J. L.
, and
González
,
J. E.
,
2015
, “
A Mechanical Drag Coefficient Formulation and Urban Canopy Parameter Assimilation Technique for Complex Urban Environments
,”
Boundary-Layer Meteorol.
,
157
(
2
), pp.
333
341
.
29.
Burian
,
S.
, and
Shepherd
,
M.
,
2008
, “
National Building Statistics Database: Version 2
,”
University of Utah
, Salt Lake City, UT.
30.
Wilson
,
E.
,
Engebrecht Metzger
,
C.
,
Horowitz
,
S.
, and
Hendron
,
R.
,
2014
, “
Building America 2014 House Simulation Protocols
,”
National Renewable Energy Laboratory
, Golden, CO, Report No. NREL/TP-5500-60988.
31.
Jain
,
R. K.
,
Smith
,
K. M.
,
Culligan
,
P. J.
, and
Taylor
,
J. E.
,
2014
, “
Forecasting Energy Consumption of Multi-Family Residential Buildings Using Support Vector Regression: Investigating the Impact of Temporal and Spatial Monitoring Granularity on Performance Accuracy
,”
Appl. Energy
,
123
, pp.
168
178
.
32.
Mlawer
,
E. J.
,
Taubman
,
S. J.
,
Brown
,
P. D.
,
Iacono
,
M. J.
, and
Clough
,
S. A.
,
1997
, “
Radiative Transfer for Inhomogeneous Atmospheres: RRTM, A Validated Correlated-k Model for the Longwave
,”
J. Geophys. Res.
,
102
(
D14
), pp.
16663
16682
.
33.
Dudhia
,
J.
,
1989
, “
Numerical Study of Convection Observed During the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model
,”
J. Atmos. Sci.
,
46
(
20
), pp.
3077
3107
.
34.
Janjić
,
Z. I.
,
1994
, “
The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes
,”
Mon. Weather Rev.
,
122
(
5
), pp.
927
945
.
35.
Kain
,
J. S.
,
2004
, “
The Kain–Fritsch Convective Parameterization: An Update
,”
J. Appl. Meteorol.
,
43
(
1
), pp.
170
181
.
36.
Hong
,
S.-Y.
, and
Lim
,
J.-O. J.
,
2006
, “
The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)
,”
J. Korean Meteor. Soc.
,
42
(
2
), pp.
129
151
.
37.
Tewari
,
M.
,
Chen
,
F.
,
Wang
,
W.
,
Dudhia
,
J.
,
LeMone
,
M.
,
Mitchell
,
K.
,
Ek
,
M.
,
Gayno
,
G.
,
Wegiel
,
J.
, and
Cuenca
,
R.
,
2004
, “
Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model
,”
20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction
, Seattle, WA, Jan 10-15, pp.
11
15
.
38.
Arend
,
M.
,
Santoro
,
D.
,
Gross
,
S. A. B.
,
Moshary
,
F.
, and
Ahmed
,
S.
, 2009, “
Development of a NYC Meteorological Network With Emphasis on Vertical Wind Profiles in Support of Meteorological and Dispersion Models
,”
Eighth Symposium on the Urban Environment
, Jan. 10-15, Paper 150289.
39.
Bretz
,
S.
,
Akbari
,
H.
, and
Rosenfeld
,
A.
,
1998
, “
Practical Issues for Using Solar-Reflective Materials to Mitigate Urban Heat Islands
,”
Atmos. Environ.
,
32
(
1
), pp.
95
101
.
40.
Rosenfeld
,
A. H.
,
Akbari
,
H.
,
Bretz
,
S.
,
Fishman
,
B. L.
,
Kurn
,
D. M.
,
Sailor
,
D.
, and
Taha
,
H.
,
1995
, “
Mitigation of Urban Heat Islands: Materials, Utility Programs, Updates
,”
Energy Build.
,
22
(
3
), pp.
255
265
.
41.
Jacobson
,
M. Z.
, and
Ten Hoeve
,
J. E.
,
2012
, “
Effects of Urban Surfaces and White Roofs on Global and Regional Climate
,”
J. Clim.
,
25
(
3
), pp.
1028
1044
.
42.
Gutiérrez
,
E.
,
González
,
J. E.
,
Martilli
,
A.
, and
Bornstein
,
R.
,
2015
, “
On the Anthropogenic Heat Fluxes Using an Air Conditioning Evaporative Cooling Parameterization for Mesoscale Urban Canopy Models
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051005
.
43.
New York Department of Transportation
, 2015, “
Street Design Manual
,” available: http://www.nyc.gov/html/dot/html/pedestrians/streetdesignmanual.shtml
44.
Metropolitan Transit Authority
,
2003
, “
Supplemental Draft Environmental Impact Statement (SDEIS) Chapter 13—Infrastructure and Energy
,” New York MTA, available: http://web.mta.info/capital/sas_docs/sdeis.htm
45.
NYSERDA
,
2014
, “
Street Lighting in New York State: Opportunities and Challenges
,” New York State Energy Research and Development Authority, New York, available: www.nyserda.ny.gov/-/media/Files/Publications/Research/Energy-Efficiency-Services/Street-Lighting-in-NYS.pdf
46.
Howard
,
B.
,
Parshall
,
L.
,
Thompson
,
J.
,
Hammer
,
S.
,
Dickinson
,
J.
, and
Modi
,
V.
,
2012
, “
Spatial Distribution of Urban Building Energy Consumption by End Use
,”
Energy Build.
,
45
, pp.
141
151
.
47.
Akbari
,
H.
, and
Taha
,
H.
,
1992
, “
The Impact of Trees and White Surfaces on Residential Heating and Cooling Energy Use in Four Canadian Cities
,”
Energy
,
17
(
2
), pp.
141
149
.
48.
Hildebrandt
,
E. W.
,
Bos
,
W.
, and
Moore
,
R.
,
1998
, “
Assessing the Impacts of White Roofs on Building Energy Loads
,”
ASHRAE Trans.
,
104
, pp.
810
818
.
49.
Parker
,
D. S.
,
Huang
,
Y. J.
,
Konopacki
,
S. J.
, and
Gartland
,
L. M.
,
1998
, “
Measured and Simulated Performance of Reflective Roofing Systems in Residential Buildings
,”
ASHRAE Trans.
,
104
(
1
), pp.
963
975
.
50.
Gutiérrez
,
E.
,
González
,
J. E.
,
Martilli
,
A.
,
Bornstein
,
R.
, and
Arend
,
M.
,
2015
, “
Simulations of a Heat-Wave Event in New York City Using a Multilayer Urban Parameterization
,”
J. Appl. Meteorol. Climatol.
,
54
(
2
), pp.
283
301
.
51.
NYISO
,
2014
, “
A Review of Distributed Energy Resources
,”
New York Independent System Operator
, DNV GL Energy, Arlington, VA.
You do not currently have access to this content.