A photobioreactor with an optical system that spatially dilutes solar photosynthetic active radiation has been designed, built, and tested at the Utah State University Biofuels Center. This photobioreactor could be used to produce microalgal biomass for a number of purposes, such as feedstock for an energy conversion process, or high-value products, such as pharmaceuticals and nutraceuticals. In addition, the reactor could be used to perform services such as removing nitrates, phosphates, and other contaminants from waste water, as well as scrubbing toxic gases and carbon dioxide from flue gas. Preliminary tests were performed that compared growth and productivity kinetics of this reactor with that of a control reactor without spatial light-dilution. Tests indicated higher specific growth rates and higher areal and volumetric yields compared with the control reactor. The maximum specific growth rate, volumetric yield, and areal yield were 0.21day1, 0.059gml1day1, and 15gmm2day1, respectively. Over 10 days of sequential-batch operation, the prototype photobioreactor converted direct-normal solar energy to energy stored in biomass at an average efficiency of 1%. The areal productivity, as mass per aperture per time, was three times higher than that of the control reactor, indicating the photobioreactor design investigated holds promise.

1.
Hu
,
Q.
,
Sommerfeld
,
M.
,
Jarvis
,
E.
,
Ghirardi
,
M.
,
Posewitz
,
M.
,
Seibert
,
M.
, and
Darzins
,
A.
, 2008, “
Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances
,”
Plant J.
0960-7412,
54
(
4
), pp.
621
639
.
2.
Borowitzka
,
M. A.
,
Commercial Production of Microalgae: Ponds, Tanks, Tubes and Fermenters
,
Elsevier Science Bv
,
New York
, pp.
313
321
.
3.
Kok
,
B.
, 1953, “
Experiments on Photosynthesis by Chlorella in Flashing Light
,”
Algal Culture: From Laboratory to Pilot Plant
, edited by
J. S.
Burlew
,
Carnegie Institute of Washington
,
Washington, DC
, Publication 600, pp.
63
75
.
4.
Powles
,
S. B.
, 1984, “
Photoinhibition of Photosynthesis Induced by Visible-Light
,”
Annu. Rev. Plant Physiol. Plant Mol. Biol.
1040-2519,
35
, pp.
15
44
.
5.
An
,
J. Y.
, and
Kim
,
B. W.
, 2000, “
Biological Desulfurization in an Optical-Fiber Photobioreactor Using an Automatic Sunlight Collection System
,”
J. Biotechnol.
0168-1656,
80
(
1
), pp.
35
44
.
6.
Hirata
,
S.
,
Hayashitani
,
M.
,
Taya
,
M.
, and
Tone
,
S.
, 1996, “
Carbon Dioxide Fixation in Batch Culture of Chlorella Sp Using a Photobioreactor with a Sunlight-Collection Device
,”
J. Ferment. Bioeng.
0922-338X,
81
(
5
), pp.
470
472
.
7.
Kremer
,
G.
,
Bayless
,
D. J.
,
Vis
,
M.
,
Prudich
,
M.
,
Cooksey
,
K.
, and
Muhs
,
J.
, 2006, “
Enhanced Practical Photosynthetic Co2 Mitigation
,” No. OSTI ID 888741.
8.
Matsunaga
,
T.
,
Takeyama
,
H.
,
Sudo
,
H.
,
Oyama
,
N.
,
Ariura
,
S.
,
Takano
,
H.
,
Hirano
,
M.
,
Burgess
,
J. G.
,
Sode
,
K.
, and
Nakamura
,
N.
, 1991,
Glutamate Production From Co2 by Marine Cyanobacterium Synechococcus Sp Using a Novel Biosolar Reactor Employing Light-Diffusing Optical Fibers
,
Humana
, pp.
157
167
.
9.
Takano
,
H.
,
Takeyama
,
H.
,
Nakamura
,
N.
,
Sode
,
K.
,
Burgess
,
J. G.
,
Manabe
,
E.
,
Hirano
,
M.
, and
Matsunaga
,
T.
, 1992,
Co2 Removal by High-Density Culture of a Marine Cyanobacterium Synechococcus Sp Using an Improved Photobioreactor Employing Light-Diffusing Optical Fibers
,
Humana
, pp.
449
458
.
10.
Zijffers
,
J. W. F.
,
Janssen
,
M.
,
Tramper
,
J.
, and
Wijffels
,
R. H.
, 2008, “
Design Process of an Area-Efficient Photobioreactor
,”
Mar. Biotechnol.
,
10
(
4
), pp.
404
415
.
11.
Zijffers
,
J. W. F.
,
Salim
,
S.
,
Janssen
,
M.
,
Tramper
,
J.
, and
Wijffels
,
R. H.
, 2008, “
Capturing Sunlight Into a Photobioreactor: Ray Tracing Simulations of the Propagation of Light from Capture to Distribution into the Reactor
,”
Chem. Eng. J.
0300-9467,
145
(
2
), pp.
316
327
.
12.
Ryther
,
J. H.
, 1956, “
Photosynthesis in the Ocean as a Function of Light Intensity
,”
Limnol. Oceanogr.
0024-3590,
1
(
1
), pp.
61
70
.
13.
Chantanachat
,
S.
, 1962, “
Neochloris Oleoabundans
,” http://www.utex.org/http://www.utex.org/
14.
Barnhart
,
M. C.
, 2006, “
Buckets of Muckets: A Compact System for Rearing Juvenile Freshwater Mussels
,”
Aquaculture
0044-8486,
254
(
1–4
), pp.
227
233
.
15.
Gatenby
,
C. M.
,
Orcutt
,
D. M.
,
Kreeger
,
D. A.
,
Parker
,
B. C.
,
Jones
,
V. A.
, and
Neves
,
R. J.
, 2003, “
Biochemical Composition of Three Algal Species Proposed as Food for Captive Freshwater Mussels
,”
J. Appl. Phycol.
0921-8971,
15
(
1
), pp.
1
11
.
16.
Li
,
Y. Q.
,
Horsman
,
M.
,
Wang
,
B.
,
Wu
,
N.
, and
Lan
,
C. Q.
, 2008, “
Effects of Nitrogen Sources on Cell Growth and Lipid Accumulation of Green Alga Neochloris Oleoabundans
,”
Appl. Microbiol. Biotechnol.
0175-7598,
81
(
4
), pp.
629
636
.
17.
Tornabene
,
T. G.
,
Holzer
,
G.
,
Lien
,
S.
, and
Burris
,
N.
, 1983, “
Lipid-Composition of the Nitrogen Starved Green-Alga Neochloris-Oleoabundans
,”
Enzyme Microb. Technol.
0141-0229,
5
(
6
), pp.
435
440
.
18.
Griffiths
,
M. J.
, and
Harrison
,
S. T. L.
, 2009, “
Lipid Productivity as a Key Characteristic for Choosing Algal Species for Biodiesel Production
,”
Proceedings of the Third Congress of the International Society for Applied Phycology
, Galway, Ireland,
Springer
,
New York
, pp.
493
507
.
19.
Gouveia
,
L.
,
Marques
,
A. E.
,
da Silva
,
T. L.
, and
Reis
,
A.
, 2009, “
Neochloris Oleabundans Utex #1185: A Suitable Renewable Lipid Source for Biofuel Production
,”
J. Ind. Microbiol. Biotechnol.
1367-5435,
36
(
6
), pp.
821
826
.
20.
Qiang
,
H.
,
Faiman
,
D.
, and
Richmond
,
A.
, 1998, “
Optimal Tilt Angles of Enclosed Reactors for Growing Photoautotrophic Microorganisms Outdoors
,”
J. Ferment. Bioeng.
0922-338X,
85
(
2
), pp.
230
236
.
You do not currently have access to this content.