Radiation heat transfer within a high-temperature solar cavity-receiver containing a windowed aperture exposed to concentrated solar radiation is solved using the gray-band approximated radiosity method for semitransparent enclosures. Spectrally selective quartz and sapphire are examined for window materials. Window and cavity temperatures are calculated as a function of the incoming radiative flux and solar energy absorption efficiency. For validation and comparability, a windowless cavity is analyzed. Due to its relatively high reflectance in the visible spectrum, the sapphire window requires higher inlet solar radiative flux than the quartz window to obtain the same reactor temperature and energy absorption efficiency.
Issue Section:
Technical Briefs
Keywords:
heat radiation,
light absorption,
optical materials,
optical windows,
quartz,
sapphire,
solar absorber-convertors,
solar,
radiation,
receiver,
window,
quartz,
sapphire,
radiosity method
Topics:
Cavities,
Quartz,
Sapphire,
Solar energy,
Temperature,
Absorption,
Solar radiation,
Reflectance
1.
Siegel
, R.
, and Howell
, J. R.
, 1992, Thermal Radiation Heat Transfer
, 3rd ed., Hemisphere
, Washington, DC
.2.
Lin
, S.
, and Sparrow
, E.
, 1965, “Radiant Interchange Among Curved Specularly Reflecting Surfaces—Application to Cylindrical and Conical Cavities
,” ASME J. Heat Transfer
0022-1481, 87
, pp. 299
–307
.3.
Steinfeld
, A.
, 1991, “Apparent Absorptance for Diffusely and Specularly Reflecting Spherical Cavities
,” Int. J. Heat Mass Transfer
0017-9310, 34
, pp. 1895
–1897
.4.
Steinfeld
, A.
, and Schubnell
, M.
, 1993, “Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver
,” Sol. Energy
0038-092X, 50
, pp. 19
–25
.5.
Welford
, W. T.
, and Winston
, R.
, 1989, High Collection Nonimaging Optics
, Academic
, San Diego, CA
.6.
Melchior
, T.
, Perkins
, C.
, Weimer
, A. W.
, and Steinfeld
, A.
, 2008, “A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy
,” Int. J. Therm. Sci.
1290-0729, 47
, pp. 1496
–1503
.7.
Wieckert
, C.
, Meier
, A.
, and Steinfeld
, A.
, 2003, “Indirectly Irradiated Solar Receiver-Reactors for High-Temperature Thermochemical Processes
,” ASME J. Sol. Energy Eng.
0199-6231, 125
, pp. 120
–123
.8.
Z’Graggen
, A.
, and Steinfeld
, A.
, 2004, “Radiative Exchange Within a Two-Cavity Configuration With a Spectrally Selective Window
,” ASME J. Sol. Energy Eng.
0199-6231, 126
, pp. 819
–822
.9.
Karni
, J.
, Kribus
, A.
, Rubin
, R.
, and Doron
, P.
, 1998, “The ‘Porcupine’: A Novel High-Flux Absorber for Volumetric Solar Receivers
,” ASME J. Sol. Energy Eng.
0199-6231, 120
, pp. 85
–95
.10.
Buck
, R.
, Bräuning
, T.
, Denk
, T.
, Pfänder
, M.
, Schwarzbözl
, P.
, and Tellez
, F.
, 2002, “Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,” ASME J. Sol. Energy Eng.
0199-6231, 124
, pp. 2
–9
.11.
Karni
, J.
, Kribus
, A.
, Ostraich
, B.
, and Kochavi
, E.
, 1998, “A High-Pressure Window for Volumetric Solar Receivers
,” ASME J. Sol. Energy Eng.
0199-6231, 120
, pp. 101
–107
.12.
Schunk
, L.
, Haeberling
, P.
, Wepf
, S.
, Wuillemin
, D.
, Meier
, A.
, and Steinfeld
, A.
, 2008, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,” ASME J. Sol. Energy Eng.
0199-6231, 130
, p. 021009
.13.
Z’Graggen
, A.
, Haueter
, P.
, Trommer
, D.
, Romero
, M.
, de Jesus
, J. C.
, and Steinfeld
, A.
, 2006, “Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II. Reactor Design, Testing, and Modeling
,” Int. J. Hydrogen Energy
0360-3199, 31
, pp. 797
–811
.14.
Kribus
, A.
, 1994, “Optical Performance of Conical Windows for Concentrated Solar Radiation
,” ASME J. Sol. Energy Eng.
0199-6231, 116
, pp. 47
–52
.15.
Röger
, M.
, Rickers
, C.
, Uhlig
, R.
, Neumann
, F.
, and Polenzky
, C.
, 2009, “Infrared-Reflective Coating on Fused Silica for a Solar High-Temperature Receiver
,” ASME J. Sol. Energy Eng.
0199-6231, 131
, p. 021004
.16.
Röger
, M.
, Pfänder
, M.
, and Buck
, R.
, 2006, “Multiple Air-Jet Window Cooling for High-Temperature Pressurized Volumetric Receivers: Testing, Evaluation, and Modeling
,” ASME J. Sol. Energy Eng.
0199-6231, 128
, pp. 265
–274
.17.
Siegel
, R.
, 1973, “Net Radiation Method for Enclosure Systems Involving Partially Transparent Walls
,” NASA
, Report No. TN D-7384.18.
Churchill
, S. W.
, and Chu
, H. H. S.
, 1975, “Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,” Int. J. Heat Mass Transfer
0017-9310, 18
, pp. 1323
–1329
.19.
Incropera
, F. P.
, and DeWitt
, D. P.
, 1996, Fundamentals of Heat and Mass Transfer
, 4th ed., Wiley
, New York
.22.
Saint-Gobain Crystals
, 2010, “Properties and Benefits of Sapphire: A Quick Reference Guide
,” http://www.photonic.saint-gobain.com/uploadedfiles/sgphotonic/documents/sapphire-material-products-properties.pdfhttp://www.photonic.saint-gobain.com/uploadedfiles/sgphotonic/documents/sapphire-material-products-properties.pdfCopyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.