Molten salts are a promising medium for thermal energy transfer and storage. They have a very low vapor pressure and most are unreactive in air. Over the past 3 decades, Sandia National Laboratories has investigated a variety of molten salt mixtures of alkali nitrates and, most recently, quaternary mixtures of sodium, calcium, lithium, and potassium nitrate salts. This effort led to the discovery of mixtures with liquidus temperatures below 100°C. We have now extended this work to the mixed nitrate/nitrite anion system and found compositions with liquidus temperatures below 80°C. In this paper, we present experimental results exploring the lithium, sodium, and potassium compositional space with a 1:1 molar mixture of nitrate/nitrite. From our work, we have identified a five-component system with a liquidus temperature near 70°C. Physical properties of these salts, such as viscosity and density, are reported as well as thermal stability in air. Such a molten salt mixture, with a low liquidus temperature, has the potential to make parabolic trough collectors economically competitive with traditional power generation schemes.

1.
Gonzalez Finat
,
A.
, and
Liberali
,
R.
, 2007, “
Concentrating Solar Power From Research to Implementation
,” European Union Technical Report, ISBN 978-92–79–05355–9.
2.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
, 2010, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
1364-0321,
14
(
1
), pp.
31
55
.
3.
Technically speaking, Stirling engines are heat engines that use concentrated solar light to generate electricity through cyclic expansion and compression of gas.
4.
Pacheco
,
J. E.
, 2002, “
Final Test and Evaluation Results From the Solar Two Project
,” Sandia National Laboratories Technical Report No. SAND2002-0120.
5.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
, 2002, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
(
2
), pp.
109
125
.
7.
Goldstein
,
R. J.
,
Ibele
,
W. E.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Kuehn
,
T. H.
,
Strykowski
,
P. J.
,
Tamma
,
K. K.
,
Heberlein
,
J. V. R.
,
Davidson
,
J. H.
,
Bischof
,
J.
,
Kulacki
,
F. A.
,
Kortshagen
,
U.
,
Garrick
,
S.
, and
Srinivasan
,
V.
, 2006, “
Heat Transfer—A Review of 2003 Literature
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
3–4
), pp.
451
534
.
8.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
McMordie
,
H. F.
, 1964,
Phase Diagrams for Ceramists
,
American Ceramic Society
.
9.
Bradshaw
,
R. W.
, and
Siegel
,
N. P.
, 2008, “
Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems
,”
ASME
Paper No. ES2008-54174.
10.
Bradshaw
,
R. W.
,
Cordaro
,
J. G.
, and
Siegel
,
N. P.
, 2009, “
Development of Inorganic Molten Salt Mixtures for Solar Thermal Energy Systems
,”
ASME
Paper No. ES2009-90140.
11.
Bradshaw
,
R. W.
, and
Brosseau
,
D. A.
, 2008, “
Low-Melting Point Inorganic Nitrate Salt Heat Transfer Fluids
,” Patent No. 7588694.
12.
Some example of low-melting salts include the following eutectic mixtures: Na–K–NO3 (221°C), Ca–Na–K–NO3 eutectic (133°C), Li–Na–K–NO3 eutectic (120°C), and Ca–Ki–K–NO3 (117°C).
13.
Doucet
,
Y.
, and
Vallet
,
C.
, 1964, “
A Thermodynamic Study of Fused Kno3-Lino3 Mixtures
,”
C. R. Chim.
1631-0748,
259
(
8
), pp.
1517
1519
.
14.
Janz
,
G. J.
, 1967,
Molten Salts Handbook
,
Academic
,
New York
.
15.
Bradshaw
,
R. W.
, 2009, “
Effect of Composition on the Density of Multi-Component Molten Nitrate Salts
,” Sandia National Laboratories Technical Report No. SAND2009-8221.
16.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
McMurdie
,
H. F.
, 1969, Phase Diagrams for Ceramists—1969 Supplement, American Ceramic Society, p.
244
.
17.
Kearney
,
D.
,
Kelly
,
B.
,
Herrmann
,
U.
,
Cable
,
R.
,
Pacheco
,
J.
,
Mahoney
,
R.
,
Price
,
H.
,
Blake
,
D.
,
Nava
,
P.
, and
Potrovitza
,
N.
, 2004, “
Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field
,”
Energy
0360-5442,
29
(
5–6
), pp.
861
870
.
18.
Nissen
,
D. A.
, and
Meeker
,
D. E.
, 1983, “
Nitrate/Nitrite Chemistry in NaNO3–KNO3 Melts
,”
Inorg. Chem.
0020-1669,
22
(
5
), pp.
716
721
.
19.
Peng
,
Q.
,
Wei
,
X. L.
,
Ding
,
J.
,
Yang
,
J. P.
, and
Yang
,
X. X.
, 2008, “
High-Temperature Thermal Stability of Molten Salt Materials
,”
Int. J. Energy Res.
0363-907X,
32
(
12
), pp.
1164
1174
.
20.
Bohlmann
,
E. G.
, 1972, “
Heat Transfer Salt for High Temperature Steam Generation
,” Oak Ridge National Laboratory Technical Report No. ORNL-TM-3777.
You do not currently have access to this content.