This study is aimed at developing a simulation model of a solar volumetric reactor for hydrocarbon reforming, operating at high temperature and pressure. It will then be used to optimize the reactor design and analyze its performance. The model development utilizes previous and on-going experimental work on volumetric receiver and catalyst development. The reaction’s kinetics are computed, using the CHEMKIN II simulation package. The chemical kinetic modeling of the relevant C-H-O system is based on: (i) Definition of the relevant computation domain and parameters: temperature, pressure, reactant compositions, residence time, and catalyst load, (ii) Utilizing laboratory measurements at 700–1400 K and 1–4 bar. to quantify the kinetic parameters for both, H2O, and CO2 reforming of CH4 and for the Reverse Water Shift reaction. Calculated and measured data are compared for three representative cases, showing a good agreement. The results indicate that the Arrhenius method can be a viable and practical way to predict the behavior of steam and CO2 reforming over a range of temperatures and pressures. Furthermore, it is shown that the present approach can provide a method for estimating the desirable dimensions of the reactor for reforming of CH4. Additional, on-going computational and experimental work, which would provide a more accurate simulation, can easily be implemented using the present numerical model.

1.
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
,
1989
, “
Chemical Reactions in Solar Furnace. Direct Heating of the Reactor in a Tubular Receiver
,”
Sol. Energy
,
42
, pp.
267
272
.
2.
Levitan
,
R.
,
Levy
,
M.
,
Rosin
,
H.
, and
Rubin
,
R.
,
1991
, “
Closed-Loop Operation of Solar Chemical Heat Pipe at the Weizmann Institute Solar Furnace
,”
Sol. Energy
,
24
, pp.
467
477
.
3.
Levy
,
M.
,
Rosin
,
H.
, and
Levitan
,
R.
,
1989
, “
Chemical Reactions in Solar Furnace by Direct Solar Irradiation of the Catalyst
,”
J. Sol. Energy Eng.
,
111
, pp.
96
97
.
4.
Rubin
,
R.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
,
1992
, “
Methanation of Synthesis Gas in a Solar Chemical Heat Pipe
,”
Int. J. Energy Res.
,
12
, pp.
1109
1119
.
5.
Abele, M., Wo¨rner, A., Brose, G., Buck, R., and Tamme, R., 1996, “Test Results of a Receiver-Reactor for Solar Methane Reforming and Aspects of Further Applications of This Technology,” Proceedings of the 8th International Symposium on Solar Thermal Concentrating Technologies, DLR, Ko¨ln, Germany, 3, pp. 1185–1204.
6.
Epstein, M., and Spiewak, I., 1994, “Design and Operation of the Weizmann Institute 480 kW Solar Reformer in an Energy Storage Cycle,” 7th Int Symp on Solar Thermal Concentrating Technologies, Moscow, Russia, 26–30 Sep., 1994, 4, pp. 958–971.
7.
Tamme, R., Buck, R., Fisher, U., Sugarmen, C., Epstein, M., and Spiewak, I., 1999, “Solar-Assisted Syngas-Driven Power System,” Proceedings of the 1999 ISES Solar World Congress, Jerusalem, Israel, pp. 544–548.
8.
Mo¨ller, S., Buck, R., Tamme, R., Epstein, M., Liebermann, D., Meri, M., Fisher, U., Rotstein, A., and Sugarmen, C., 2002, “Solar Production of Syngas for Electricity Generation: SOLASYS Project Test-Phase,” 11th Int. Symp on Concentrated Solar Power and Chemical Energy Technologies, Zurich, Switzerland, Sep. 4–6, 2002, pp. 231–237.
9.
Buck
,
R.
,
Muir
,
J. F.
,
Hogan
,
R. E.
, and
Skocypec
,
R. D.
,
1991
, “
Carbon-Dioxide Reforming of Methane in a Solar Volumetric Receiver Reactor—The Caesar Project
,”
Sol. Energy Mater. Sol. Cells
,
24, pp
449
463
.
10.
Muir
,
J. F.
,
Hogan
,
R. E.
,
Skocypec
,
R. D.
, and
Buck
,
R.
,
1994
, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I-Test and Analysis
,”
Sol. Energy
,
52
(
6
), pp.
467
477
.
11.
Russel
,
D.
,
Skocypec
,
R. D.
,
Hogan
,
R. E.
, and
Muir
,
J. F.
,
1994
, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish. II. Modeling and Analysis
,”
Sol. Energy
,
52
(
6
), pp.
479
490
.
12.
Anikeev
,
V. I.
,
Parmon
,
V. N.
,
Kirillov
,
V. A.
, and
Zamaraev
,
K. I.
,
1990
, “
Theoretical and Experimental Studies of Solar Catalytic Power Plants Based on Reversible-Reactions With Participation of Methane and Synthesis Gas
,”
Int. J. Hydrogen Energy
,
15
, pp.
275
286
.
13.
Anikeev
,
V. I.
,
Bobrin
,
A. S.
,
Ortner
,
J.
,
Schmidt
,
S.
,
Funken
,
K. H.
, and
Kuzin
,
N. A.
,
1998
, “
Catalytic Thermochemical Reactor/Receiver for Solar Reforming of Natural Gas: Design and Performance
,”
Sol. Energy
,
63
, pp.
97
104
.
14.
Benito, R., Duffy, G. J., Do, K. T., McNaguhton, R., Edwards, J. H., Dave, N., Chensee, M., and Walters, C., 2002, “CSIRO’s Advanced Power Generation Technology Using Solar Thermal—Fossil Energy Hybrid Systems,” Sixth International Conference on Greenhouse Gas Control Technologies (GHGT6), 1–4 Oct, 2002, Kyoto, Japan.
15.
Epstein, M., Hodara, I., Segal, A., Yogev, A., and Shemer, Z., 1996, “Potential Industrial Applications of the Solar Tower Technology for Use at the Dead Sea Works (DSW): A Feasibility Study,” NEPRO Engineering/Israel Ministry of Energy and Infrastructure, Publication No. RD-02-96.
16.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
,
1998
, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
, pp.
121
129
.
17.
Karni
,
J.
,
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Fiterman
,
A.
, and
Sagie
,
D.
,
1997
, “
The DIAPR: A High-Pressure, High Temperature Solar Receiver
,”
J. Sol. Energy Eng.
,
119
, pp.
74
78
.
18.
Kribus
,
A.
,
Fiterman
,
A.
,
Doron
,
P.
, and
Karni
,
J.
,
1997
, “
Energy Transport in a DIAPR-Type Receiver
,”
J. Sol. Energy Eng.
,
119
, pp.
74
78
.
19.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
,
2001
, “
Performance of the Directly Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1200°C
,”
J. Sol. Energy Eng.
,
123
, pp.
10
17
.
20.
Kribus, A., Fiterman, A., Doron, P., Karni, J., and Agranat, V., 1994, “Simulation of Energy Transport in a DIAPR-Type Receiver,” Proc. 7th Intl. Symp. Solar Thermal Concentrating Technologies, 4, pp. 864–872, Moscow, Sept. 1994.
21.
Ben-Zvi, R., and Kribus, A., 2001, “A Simulation Tool for Volumetric Absorbers,” CONSOLAR, Final Report.
22.
Hickman
,
D. A.
, and
Schmidt
,
L. D.
,
1993
, “
Steps in CH4 Oxidation on Pt and Rh Surfaces: High-Temperature Reactor Simulation
,”
AIChE J.
,
39
, pp.
1164
1167
.
23.
Deutschman, O., and Schmidt, L. D., 1998, “Two-Dimensional Modeling of Partial Oxidation of Methane on Rhodium in a Short Contact Time Reactor,” University of Minnesota Supercomputing Institute, Research Report, UMSI98/119.
24.
Deutschman, O., and Schmidt, L. D., 1998, “Partial Oxidation of Methane in a Short Contact Time Reactor: Two-Dimensional Modeling With Detailed Chemistry,” University of Minnesota Supercomputing Institute, Research Report, UMSI98/120.
25.
Berman, A., Epstein, M., and Karni, J., 1996, “Development of Kippod Absorber for Solar Reformer of Light Hydrocarbons,” Report RD-19-96 to Israel Ministry of Infrastructure. [Available from http://www.mni.gov.il/english/index.html]
26.
Temkin
,
M. I.
,
1979
, “
Industrial Heterogeneous Catalytic Reactions
,”
Adv. Catal.
,
28
, pp.
175
292
.
27.
Berman A., Karni, J., and Epstein, M., 2001, “Development of High Performance Volumetric Gas-Gas Solar Reactor,” Report 20-11-01/5-2000 to Israel Ministry of Infrastructure. [Available from http://www.mni.gov.il/english/index.html]
28.
Graven
,
W. M.
, and
Lang
,
F. J.
,
1954
, “
Kinetics and Mechanisms of the Two Opposing Reactions of the Equilibrium CO+H2O=CO2+H2,
J. Am. Chem. Soc.
,
76
, pp.
2602
2607
.
29.
Karni
,
J.
,
Kribus
,
A.
,
Rubin
,
R.
, and
Doron
,
P.
,
1998
, “
The Porcupine: A Novel High-Flux Absorber for Volumetric Solar Receivers
,”
J. Sol. Energy Eng.
,
120
, pp.
85
95
.
You do not currently have access to this content.