Abstract

Production control problems have been solved using analytical and simulation models, but their applications are limited because of the substantial execution times that they generally require. Applications such as order promising do not allow the time to execute such models. This paper proposes confluence of two Industry 4.0 technologies, machine learning and digital twins, for such time-sensitive applications. Surrogate models developed using machine-learning approaches can provide quick responses, but they need large amounts of data collected from operations over long periods to provide answers with acceptable accuracy. A digital twin of manufacturing operations can be used to drastically reduce the time to generate the data needed by machine-learning approaches. This paper describes the concept for digital twin–enabled machine learning and an implementation for order promising using a hypothetical job shop problem. Data are generated across a range of scenarios by the digital twin of the job shop and analyzed using a Gaussian process regression approach. A meta model is generated that is capable of estimating cycle times based on the current situation in the job shop. The example implementation demonstrates the advantages offered by the approach for production planning and control level applications.

References

1.
Frank
A. G.
,
Dalenogare
L. S.
, and
Ayala
N. F.
, “
Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies
,”
International Journal of Production Economics
210
(April
2019
):
15
26
, https://doi.org/10.1016/j.ijpe.2019.01.004
2.
Kusiak
A.
, “
Smart Manufacturing Must Embrace Big Data
,”
Nature
544
, no. 
7648
(April
2017
):
23
25
, https://doi.org/10.1038/544023a
3.
Ad-hoc Industrial Advisory Group
Factories of the Future PPP – Strategic Multi-Annual Roadmap
(
Brussels, Belgium
:
European Commission
,
2010
), https://doi.org/10.2777/98640
4.
Dalenogare
L. S.
,
Benitez
G. B.
,
Ayala
N. F.
, and
Frank
A. G.
, “
The Expected Contribution of Industry 4.0 Technologies for Industrial Performance
,”
International Journal of Production Economics
204
(October
2018
):
383
394
, https://doi.org/10.1016/j.ijpe.2018.08.019
5.
Hahn
G. J.
, “
Industry 4.0: A Supply Chain Innovation Perspective
,”
International Journal of Production Research
58
, no. 
5
(
2020
):
1425
1441
, https://doi.org/10.1080/00207543.2019.1641642
6.
Shao
G.
,
Jain
S.
,
Laroque
C.
,
Lee
L. H.
,
Lendermann
P.
, and
Rose
O.
, “
Digital Twin for Smart Manufacturing: The Simulation Aspect
,” in
2019 Winter Simulation Conference
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2019
),
2085
2098
, https://doi.org/10.1109/WSC40007.2019.9004659
7.
Siedlak
D. J. L.
,
Pinon
O. J.
,
Robertson
B. E.
, and
Mavris
D. N.
, “
Robust Simulation-Based Scheduling Methodology to Reduce the Impact of Manual Installation Tasks on Low-Volume Aerospace Production Flows
,”
Journal of Manufacturing Systems
46
(January
2018
):
193
207
, https://doi.org/10.1016/j.jmsy.2017.12.006
8.
Fuller
A.
,
Fan
Z.
,
Day
C.
, and
Barlow
C.
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
8
(
2020
):
108952
108971
, https://doi.org/10.1109/ACCESS.2020.2998358
9.
Lu
Y.
,
Liu
C.
,
Wang
K. I.
,
Huang
H.
, and
Xu
X.
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Robotics and Computer-Integrated Manufacturing
61
(February
2020
): 101837, https://doi.org/10.1016/j.rcim.2019.101837
10.
Wuest
T.
,
Weimer
D.
,
Irgens
C.
, and
Thoben
K.-D.
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Production & Manufacturing Research
4
, no. 
1
(
2016
):
23
45
, https://doi.org/10.1080/21693277.2016.1192517
11.
Sharp
M.
,
Ak
R.
, and
Hedberg
T.
 Jr.
, “
A Survey of the Advancing Use and Development of Machine Learning in Smart Manufacturing
,”
Journal of Manufacturing Processes
48
, Part C (July
2018
):
170
179
, https://doi.org/10.1016/j.jmsy.2018.02.004
12.
Angelopoulos
A.
,
Michailidis
E. T.
,
Nomikos
N.
,
Trakadas
P.
,
Hatziefremidis
A.
,
Voliotis
S.
, and
Zahariadis
T.
, “
Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects
,”
Sensors
20
, no. 
1
(January
2020
): 109, https://doi.org/10.3390/s20010109
13.
Kontar
R.
,
Zhou
S.
, and
Horst
J.
, “
Estimation and Monitoring of Key Performance Indicators of Manufacturing Systems Using the Multi-output Gaussian Process
,”
International Journal of Production Research
55
, no. 
8
(
2017
):
2304
2319
, https://doi.org/10.1080/00207543.2016.1237791
14.
Mori
J.
and
Mahalec
V.
, “
Planning and Scheduling of Steel Plates Production. Part I: Estimation of Production Times via Hybrid Bayesian Networks for Large Domain of Discrete Variables
,”
Computers & Chemical Engineering
79
(August
2015
):
113
134
, https://doi.org/10.1016/j.compchemeng.2015.02.005
15.
Lingitz
L.
,
Gallina
V.
,
Ansari
F.
,
Gyulai
D.
,
Pfeiffer
A.
,
Sihn
W.
, and
Monostori
L.
, “
Lead Time Prediction Using Machine Learning Algorithms: A Case Study by a Semiconductor Manufacturer
,”
Procedia CIRP
72
(
2018
):
1051
1056
, https://doi.org/10.1016/j.procir.2018.03.148
16.
Jain
S.
,
Narayanan
A.
, and
Lee
Y.-T. T.
, “
Comparison of Data Analytics Approaches Using Simulation
,” in
2018 Winter Simulation Conference (WSC)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2018
),
1084
1095
, https://doi.org/10.1109/WSC.2018.8632330
17.
Fang
W.
,
Guo
Y.
,
Liao
W.
,
Ramani
K.
, and
Huang
S.
, “
Big Data Driven Jobs Remaining Time Prediction in Discrete Manufacturing System: A Deep Learning-Based Approach
,”
International Journal of Production Research
58
, no. 
9
(
2020
):
2751
2766
, https://doi.org/10.1080/00207543.2019.1602744
18.
Zhuang
C.
,
Liu
J.
, and
Xiong
H.
, “
Digital Twin-Based Smart Production Management and Control Framework for the Complex Product Assembly Shop-Floor
,”
The International Journal of Advanced Manufacturing Technology
96
, no. 
1
(April
2018
):
1149
1163
, https://doi.org/10.1007/s00170-018-1617-6
19.
Li
Y.
and
Roy
U.
, “
Challenges in Developing a Computational Platform to Integrate Data Analytics with Simulation-Based Optimization
,” in
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1B: 35th Computers and Information in Engineering Conference
(
New York
:
American Society of Mechanical Engineers
,
2015
), V01BT02A035, https://doi.org/10.1115/DETC2015-46410
20.
Gaikwad
A.
,
Yavari
R.
,
Montazeri
M.
,
Cole
K.
,
Bian
L.
, and
Rao
P.
, “
Toward the Digital Twin of Additive Manufacturing: Integrating Thermal Simulations, Sensing, and Analytics to Detect Process Faults
,”
IISE Transactions
52
, no. 
11
(
2020
):
1204
1217
, https://doi.org/10.1080/24725854.2019.1701753
21.
Choi
T.-M.
,
Wallace
S. W.
, and
Wang
Y.
, “
Big Data Analytics in Operations Management
,”
Production and Operations Management
27
, no. 
10
(October
2018
):
1868
1883
, https://doi.org/10.1111/poms.12838
22.
Xu
Y.
,
Sun
Y.
,
Liu
X.
, and
Zheng
Y.
, “
A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning
,”
IEEE Access
7
(
2019
):
19990
19999
, https://doi.org/10.1109/ACCESS.2018.2890566
23.
Alexopoulos
K.
,
Nikolakis
N.
, and
Chryssolouris
G.
, “
Digital Twin-Driven Supervised Machine Learning for the Development of Artificial Intelligence Applications in Manufacturing
,”
International Journal of Computer Integrated Manufacturing
33
, no. 
5
(
2020
):
429
439
, https://doi.org/10.1080/0951192X.2020.1747642
24.
Rasheed
A.
,
San
O.
, and
Kvamsdal
T.
, “
Digital Twin: Values, Challenges and Enablers from a Modeling Perspective
,”
IEEE Access
8
(
2020
):
21980
22012
, https://doi.org/10.1109/ACCESS.2020.2970143
25.
Zezulka
F.
,
Marcon
P.
,
Vesely
I.
, and
Sajdl
O.
, “
Industry 4.0 – An Introduction in the Phenomenon
,”
IFAC-PapersOnLine
49
, no. 
25
(
2016
):
8
12
, https://doi.org/10.1016/j.ifacol.2016.12.002
26.
Jain
S.
,
Shao
G.
, and
Shin
S.-J.
, “
Manufacturing Data Analytics Using a Virtual Factory Representation
,”
International Journal of Production Research
55
, no. 
18
(
2017
):
5450
5464
, https://doi.org/10.1080/00207543.2017.1321799
27.
28.
MTConnect Standard, ANSI/MTC1.4
,” The MTConnect Institute, 2018, http://web.archive.org/web/20221105200529/https://www.mtconnect.org/standard-download20181
29.
Standard for Core Manufacturing Simulation Data (CMSD) – XML Representation
, SISO-STD-008-01-2012 (St. Petersburg, FL:
Simulation Interoperability Standards Organization
,
2012
), https://web.archive.org/web/20230518182622/https://www.sisostds.org/DesktopModules/Bring2mind/DMX/API/Entries/Download?Command=Core_Download&EntryId=36239&PortalId=0&TabId=105
31.
Narayanan
A.
and
Lee
Y. T.
,
Model-Based Approach towards Integrating Manufacturing Design and Analysis, NIST Advanced Manufacturing Series 300-5
(
Gaithersburg, MD
:
National Institute of Standards and Technology
,
2018
), http://web.archive.org/web/20211208085749/https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-5.pdf
32.
Reinhardt
H.
,
Weber
M.
, and
Putz
M.
, “
A Survey on Automatic Model Generation for Material Flow Simulation in Discrete Manufacturing
,”
Procedia CIRP
81
(
2019
):
121
126
, https://doi.org/10.1016/j.procir.2019.03.022
33.
Lechevalier
D.
,
Narayanan
A.
, and
Rachuri
S.
, “
Towards a Domain-Specific Framework for Predictive Analytics in Manufacturing
,” in
2014 IEEE International Conference on Big Data (Big Data)
(
Washington, DC
:
Institute of Electrical and Electronics Engineers (IEEE)
),
987
995
, https://doi.org/10.1109/BigData.2014.7004332
34.
PMML 4.4 - General Structure
,” Data Mining Group,
2019
, http://web.archive.org/web/20221105204034/https://dmg.org/pmml/v4-3/GeneralStructure.html
35.
Jain
S.
,
Lechevalier
D.
,
Woo
J.
, and
Shin
S.-J.
, “
Towards a Virtual Factory Prototype
,” in
2015 Winter Simulation Conference
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2015
),
2207
2218
, https://doi.org/10.1109/WSC.2015.7408333
36.
Jain
S.
and
Lechevalier
D.
, “
Standards Based Generation of a Virtual Factory Model
,” in
2016 Winter Simulation Conference
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2016
),
2762
2773
, https://doi.org/10.1109/WSC.2016.7822313
37.
Nahavandi
S.
, “
Industry 5.0—A Human-Centric Solution
,”
Sustainability
11
, no. 
16
(August
2019
): 4371, https://doi.org/10.3390/su11164371
This content is only available via PDF.
You do not currently have access to this content.