Abstract

In this work, the federated learning methodology is applied to predict defects in sheet metal forming processes exposed to sources of scatter in the material properties and process parameters. Numerical simulations of the U-channel forming process were performed to analyze springback for three types of sheet steel materials. The datasets of different clients are used to train a single machine learning model. With this approach, multiple parties would simultaneously train a machine learning model on their combined data by training the models locally on the client nodes and progressively improving the learning model through interaction with the central server. This way the industrial peers have no access to the others local data in a centralized server. The predictive performance achieved is similar to a standard centralized learning method, offering competitive results of collaborative machine learning in industrial environment.

References

1.
McMahan
H. B.
,
Moore
E.
,
Ramage
D.
,
Hampson
S.
, and
Arcas
B. A. y
, “
Communication-Efficient Learning of Deep Networks from Decentralized Data
,”
arXiv preprint arXiv:1602.05629
,
2016
, https://arxiv.org/abs/1602.05629
2.
Fung
V. W. C.
and
Yung
K. C.
, “
An Intelligent Approach for Improving Printed Circuit Board Assembly Process Performance in Smart Manufacturing
,”
International Journal of Engineering Business Management
12
(January
2020
), https://doi.org/10.1177/1847979020946189
3.
Lu
Y.
,
Xu
X.
, and
Wang
L.
, “
Smart Manufacturing Process and System Automation – A Critical Review of the Standards and Envisioned Scenarios
,”
Journal of Manufacturing Systems
56
(July
2020
): 312–325, https://doi.org/10.1016/j.jmsy.2020.06.010
4.
Wang
B.
,
Tao
F.
,
Fang
X.
,
Liu
C.
,
Liu
Y.
, and
Freiheit
T.
, “
Smart Manufacturing and Intelligent Manufacturing: A Comparative Review
,”
Engineering.
Published ahead of print, 20 September,
2020
, https://doi.org/10.1016/j.eng.2020.07.017
5.
Henzel
R.
and
Herzwurm
G.
, “
Cloud Manufacturing: A State-of-the-Art Survey of Current Issues
,”
Procedia CIRP
 72 (
2018
): 947–952, https://doi.org/10.1016/j.procir.2018.03.055
6.
Simeone
A.
,
Caggiano
A.
, and
Zenga
Y.
, “
Smart Cloud Manufacturing Platform for Resource Efficiency Improvement of Additive Manufacturing Services
,”
Procedia CIRP
88
(
2020
):
387
392
, https://doi.org/10.1016/j.procir.2020.05.067
7.
Hasan
M.
and
Starly
B.
, “
Decentralized Cloud Manufacturing-as-a-Service (CMaaS) Platform Architecture with Configurable Digital Assets
,”
Journal of Manufacturing Systems
56
(July
2020
):
157
174
, https://doi.org/10.1016/j.jmsy.2020.05.017
8.
Hu
L.
,
Nguyen
N.-T.
,
Tao
W.
.
Leu
M. C.
,
Liu
X. F.
,
Shahriar
M. R.
, and
Al Sunny
S. M. N.
, “
Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect
,”
Procedia Manufacturing
26
(
2018
):
1193
1203
, https://doi.org/10.1016/j.promfg.2018.07.155
9.
Corallo
A.
,
Lazoi
M.
, and
Lezzi
M.
, “
Cybersecurity in the Context of Industry 4.0: A Structured Classification of Critical Assets and Business Impacts
,”
Computers in Industry
114
(January
2020
): 103165, https://doi.org/10.1016/j.compind.2019.103165
10.
Morris
D.
,
Madzudzo
G.
, and
Garcia-Perez
A.
, “
Cybersecurity Threats in the Auto Industry: Tensions in the Knowledge Environment
,”
Technological Forecasting and Social Change
157
(August
2020
): 120102, https://doi.org/10.1016/j.techfore.2020.120102
11.
Asghara
M. R.
,
Hu
Q.
, and
Zeadally
S.
, “
Cybersecurity in Industrial Control Systems: Issues, Technologies, and Challenges
,”
Computer Networks
165
(December
2019
): 106946, https://doi.org/10.1016/j.comnet.2019.106946
12.
Zong
W.
,
Chow
Y.-W.
, and
Susilo
W.
, “
Interactive Three-Dimensional Visualization of Network Intrusion Detection Data for Machine Learning
,”
Future Generation Computer Systems
102
(January
2020
):
292
306
, https://doi.org/10.1016/j.future.2019.07.045
13.
Mahdavifar
S.
and
Ghorbani
A. A.
, “
Application of Deep Learning to Cybersecurity: A Survey
,”
Neurocomputing
347
(June
2019
):
149
176
, https://doi.org/10.1016/j.neucom.2019.02.056
14.
Wu
M.
,
Song
Z.
, and
Moon
Y. B.
, “
Detecting Cyber-Physical Attacks in CyberManufacturing Systems with Machine Learning Methods
,”
Journal of Intelligent Manufacturing
30
, no. 
3
(
2019
):
1111
1123
, https://doi.org/10.1007/s10845-017-1315-5
15.
Zhang
Q.
,
Liu
Y.
, and
Zhang
Z.
, “
A New Optimization Method for Sheet Metal Forming Processes Based on an Iterative Learning Control Model
,”
The International Journal of Advanced Manufacturing Technology
, no. 
85
(
2015
):
1063
1075
, https://doi.org/10.1007/s00170-015-7975-4
16.
Naceur
H.
,
Ben-Elechi
S.
,
Batoz
J. L.
, and
Knopf-Lenoir
C.
, “
Response Surface Methodology for the Rapid Design of Aluminum Sheet Metal Forming Parameters
,”
Materials and Design
29
, no. 
4
(
2008
):
781
790
, https://doi.org/10.1016/j.matdes.2007.01.018
17.
Ribeiro
B.
,
Silva
J.
,
Sung
A. H.
, and
Suryakumar
D.
, “
Critical Feature Selection and Critical Sampling for Data Mining
,” in
International Conference on Computational Intelligence, Cyber Security, and Computational Models
(
Singapore
:
Springer
,
2018
),
13
24
, https://doi.org/10.1007/978-981-13-0716-4_2
18.
Wang
J.
,
Wu
X.
,
Thomson
P. F.
, and
Flitman
A.
, “
A Neural Networks Approach to Investigating the Geometrical Influence on Wrinkling in Sheet Metal Forming
,”
Journal of Materials Processing Technology
105
, no. 
3
(
2000
):
215
220
, https://doi.org/10.1016/S0924-0136(00)00534-3
19.
Inamdar
M. V.
,
Date
P. P.
, and
Desai
U. B.
, “
Studies on the Prediction of Springback in Air Vee Bending of Metallic Sheets Using an Artificial Neural Network
,”
Journal of Materials Processing Technology
108
, no. 
1
(
2000
):
45
–54, https://doi.org/10.1016/S0924-0136(00)00588-4
20.
Gisario
A.
,
Barletta
M.
,
Conti
C.
, and
Guarino
S.
, “
Springback Control in Sheet Metal Bending by Laser-Assisted Bending: Experimental Analysis, Empirical and Neural Network Modelling
,”
Optics and Lasers in Engineering
49
, no. 
12
(
2011
):
1372
1383
, https://doi.org/10.1016/j.optlaseng.2011.07.010
21.
Ruan
F.
,
Feng
Y.
, and
Liu
W.
, “
Springback Prediction for Complex Sheet Metal Forming Parts Based on Genetic Neural Network
,” in
2008 Second International Symposium on Intelligent Information Technology Application
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2008
),
157
161
, https://doi.org/10.1109/IITA.2008.425
22.
Liu
W.
,
Liu
Q.
,
Ruan
F.
,
Liang
Z.
, and
Qiu
H.
, “
Springback Prediction for Sheet Metal Forming Based on GA-ANN Technology
,”
Journal of Materials Processing Technology
187–188
(June
2007
):
227
231
, https://doi.org/10.1016/j.jmatprotec.2006.11.087
23.
Guo
Z.
and
Tang
W.
, “
Bending Angle Prediction Model Based on BPNN-Spline in Air Bending Springback Process
,”
Mathematical Problems in Engineering
2017
(February
2017
): 7834621, https://doi.org/10.1155/2017/7834621
24.
Miranda
S. S.
,
Barbosa
M. R.
,
Santos
A. D.
,
Pacheco
J. B.
, and
Amaral
R. L.
, “
Forming and Springback Prediction in Press Brake Air Bending Combining Finite Element Analysis and Neural Networks
,”
The Journal of Strain Analysis for Engineering Design
53
, no. 
8
(
2018
):
584
601
, https://doi.org/10.1177/0309324718798222
25.
Kazan
R.
,
Firat
M.
, and
Tiryaki
A. E.
, “
Prediction of Springback in Wipe-Bending Process of Sheet Metal Using Neural Network
,”
Materials & Design
30
, no. 
2
(
2009
):
418
423
, https://doi.org/10.1016/j.matdes.2008.05.033
26.
Nasrollahi
V.
and
Arezoo
B.
, “
Prediction of Springback in Sheet Metal Components with Holes on the Bending Area, Using Experiments, Finite Element and Neural Networks
,”
Materials & Design
36
(April
2012
): 331–336, https://doi.org/10.1016/j.matdes.2011.11.039
27.
Sharad
G.
and
Nandedkar
V. M.
, “
Springback in Sheet Metal U Bending-Fea and Neural Network Approach
,”
Procedia Materials Science
 6 (
2014
):
835
839
, https://doi.org/10.1016/j.mspro.2014.07.100
28.
Dib
M. A.
,
Oliveira
N. J.
,
Marques
A. E.
,
Oliveira
M. C.
,
Fernandes
J. V.
,
Ribeiro
B. M.
, and
Prates
P. A.
, “
Single and Ensemble Classifiers for Defect Prediction in Sheet Metal Forming under Variability
,”
Neural Computing and Applications
32
, no. 16 (
2019
):
12335
12349
, https://doi.org/10.1007/s00521-019-04651-6
29.
Dib
M.
,
Ribeiro
B.
, and
Prates
P.
, “
Model Prediction of Defects in Sheet Metal Forming Processes
,” in
International Conference on Engineering Applications of Neural Networks
(
Cham, Switzerland
:
Springer
,
2018
), 169–180, https://doi.org/10.1007/978-3-319-98204-5_14
30.
Shokri
R.
and
Shmatikov
V.
, “
Privacy-Preserving Deep Learning
,” in
2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2015
),
909
910
, https://doi.org/10.1109/ALLERTON.2015.7447103
31.
Hao
M.
,
Li
H.
,
Luo
X.
,
Xu
G.
,
Yang
H.
, and
Liu
S.
, “
Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial Intelligence
,”
IEEE Transactions on Industrial Informatics
16
, no. 
10
(
2020
):
6532
6542
, https://doi.org/10.1109/TII.2019.2945367
32.
Doku
R.
,
Rawat
D. B.
, and
Liu
C.
, “
Towards Federated Learning Approach to Determine Data Relevance in Big Data
” in
2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2019
),
184
192
, https://doi.org/10.1109/IRI.2019.00039
33.
Sattler
F.
,
Wiedemann
S.
,
Müller
K.-R.
, and
Samek
W.
, “
Robust and Communication-Efficient Federated Learning from Non-i.i.d. Data
,”
IEEE Transactions on Neural Networks and Learning Systems
31
, no. 
9
(
2020
):
3400
3413
, https://doi.org/10.1109/TNNLS.2019.2944481
34.
Kim
Y. J.
and
Hong
C. S.
, “
Blockchain-Based Node-Aware Dynamic Weighting Methods for Improving Federated Learning Performance
” in
2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2019
),
1
4
, https://doi.org/10.23919/APNOMS.2019.8893114
35.
Chen
Y.
,
Sun
X.
, and
Jin
Y.
, “
Communication-Efficient Federated Deep Learning with Layerwise Asynchronous Model Update and Temporally Weighted Aggregation
,”
IEEE Transactions on Neural Networks and Learning Systems
31
, no. 
10
(
2020
):
4229
4238
, https://doi.org/10.1109/TNNLS.2019.2953131
36.
Konečný
J.
,
McMahan
H. B.
,
Yu
F. X.
,
Richtárik
P.
,
Suresh
A. T.
, and
Bacon
D.
, “
Federated Learning: Strategies for Improving Communication Efficiency
,”
arXiv preprint arXiv:1610.05492
,
2016
, http://web.archive.org/web/20201128124417/https://arxiv.org/abs/1610.05492
37.
Oliveira
M. C.
,
Alves
J. L.
, and
Menezes
L. F.
, “
Algorithms and Strategies for Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing Process
,”
Archives of Computational Methods in Engineering
15
, no. 
2
(
2008
):
113
162
, https://doi.org/10.1007/s11831-008-9018-x
38.
Neto
D. M.
,
Oliveira
M. C.
, and
Menezes
L. F.
, “
Surface Smoothing Procedures in Computational Contact Mechanics
,”
Archives of Computational Methods in Engineering
24
, no. 
1
(
2017
):
37
87
, https://doi.org/10.1007/s11831-015-9159-7
39.
Makinouchi
A.
,
Nakamachi
E.
,
Onate
E.
, and
Wagoner
R. H.
, “
NUMISHEET’93 Benchmark Problem
” (paper presentation, Second International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes-Verification of Simulation with Experiment, Isehara, Japan, August 31–September 2,
1993
).
40.
Prates
P. A.
,
Adaixo
A. S.
,
Oliveira
M. C.
, and
Fernandes
J. V.
, “
Numerical Study on the Effect of Mechanical Properties Variability in Sheet Metal Forming Processes
,”
The International Journal of Advanced Manufacturing Technology
96
, no. 
1
(
2018
):
561
580
, https://doi.org/10.1007/s00170-018-1604-y
This content is only available via PDF.
You do not currently have access to this content.