Abstract

The integrity assessment of aged or worn out large electromechanical equipment units, such as in hydroelectric generators, for possible life extension has been identified as a growing challenge in the electrical power generation industry worldwide. Although the available recommended practices provide a general assessment process, it is necessary to have more detailed guidelines. This can be achieved by adding relevant theories and models which can capture time-dependent equipment unit degradation more precisely. Seeking to fulfill this gap, this work aims to present a framework that combines several techniques of data analysis, reliability, and decision-making to support engineers, operators, and managers in the often-complex decision process, regarding whether or not to extend the time in service of an equipment or system, thus postponing the moment of a scheduled maintenance shutdown. To demonstrate the application of the proposed framework, a case study is presented considering simulated scenarios based on data and information from a real Hydroelectric Power Plant. The results show how the reliability of the components and the remaining useful life of those in fault can impact the decision-making regarding the in-service life extension of a system.

References

1.
Özcan
,
E. C.
,
Ünlüsoy
,
S.
, and
Eren
,
T.
,
2017
, “
A Combined Goal Programming – AHP Approach Supported With TOPSIS for Maintenance Strategy Selection in Hydroelectric Power Plants
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
1410
1423
.10.1016/j.rser.2017.04.039
3.
IEA
,
2021
, Hydropower Special Market Report - Analysis and Forecast to 2030, IEA Publications, Paris, accessed Aug. 10, 2021, https://iea.blob.core.windows.net/assets/4d2d4365-08c6-4171-9ea2-8549fabd1c8d/HydropowerSpecialMarketReport_corr.pdf
4.
Murad
,
C.
,
Melani
,
A. H. A.
,
Michalski
,
M. A. C.
,
Caminada Netto
,
A.
,
de Souza
,
G.
, and
Nabeta
,
S. I.
,
2020
, “
Fuzzy-FMSA: Evaluating Fault Monitoring and Detection Strategies Based on Failure Mode and Symptom Analysis and Fuzzy Logic
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
6
(
3
), p. 031001.10.1115/1.4045974
5.
Sioshansi
,
F.
, and
Pfaffenberger
,
W.
,
2006
,
Electricity Market Reform - An International Perspective
, 1st ed.,
Henri Van Dorssen
,
Oxford, UK
.
6.
de Araújo Wanderley
,
C.
,
Cullen
,
J.
, and
Tsamenyi
,
M.
,
2011
, “
Privatisation and Electricity Sector Reforms in Brazil: Accounting Perspective
,”
J. Account. Emerg. Econ.
,
1
(
1
), pp.
53
75
.10.1108/20421161111107859
7.
Gaier
,
R. V.
,
McGeever
,
J.
,
Wallis
,
D.
, and
Chang
,
R.
,
2021
, Brazil Power Operator Asks for Maintenance Delays Amid Drought,
Reuters
,
London
, accessed Aug. 10, 2021, https://www.reuters.com/world/americas/brazil-power-grid-operator-asks-hydro-dams-postpone-works-amid-drought-2021-07-17/
8.
Chemweno
,
P.
,
Pintelon
,
L.
, and
Muchiri
,
P.
,
2016
, “
Simulating the Impact of Deferred Equipment Maintenance
,”
Lecture Notes Mech. Eng.
,
PartF, 4
, pp.
133
140
.10.1007/978-3-319-27064-7_13
9.
Ferreira
,
N. N.
,
Martins
,
M. R.
,
Gaya de Figueiredo
,
M. A.
, and
Gagno
,
V. H.
,
2020
, “
Guidelines for Life Extension Process Management in Oil and Gas Facilities
,”
J. Loss Prev. Process Indus.
,
68
, p.
104290
.10.1016/j.jlp.2020.104290
10.
Vaidya
,
P.
, and
Rausand
,
M.
,
2011
, “
Remaining Useful Life, Technical Health, and Life Extension
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
225
(
2
), pp.
219
31
.10.1177/1748007810394557
11.
Gummer
,
J. H.
, and
Obermoser
,
H.
,
2013
, “
Timing for Major Overhauls of Hydroelectric Equipment
,”
HYDRO International Conference and Exhibition 2013
, Innsbruck, Austria, p.
9
.
12.
Goldberg
,
J.
, and
Lier
,
O. E.
,
2011
,
Rehabilitation of Hydropower - An Introduction to Economic and Technical Issues
, World Bank,
Washington, DC
.
13.
Shafiee
,
M.
, and
Animah
,
I.
,
2017
, “
Life Extension Decision Making of Safety Critical Systems: An Overview
,”
J. Loss Prev. Process Indus.
,
47
, pp.
174
188
.10.1016/j.jlp.2017.03.008
14.
Animah
,
I.
, and
Shafiee
,
M.
,
2018
, “
Condition Assessment, Remaining Useful Life Prediction and Life Extension Decision Making for Offshore Oil and Gas Assets
,”
J. Loss Prev. Process Industries
,
53
, pp.
17
28
.10.1016/j.jlp.2017.04.030
15.
Aeran
,
A.
,
Siriwardane
,
S. C.
,
Mikkelsen
,
O.
, and
Langen
,
I.
,
2017
, “
A Framework to Assess Structural Integrity of Ageing Offshore Jacket Structures for Life Extension
,”
Mar. Struct.
,
56
, pp.
237
259
.10.1016/j.marstruc.2017.08.002
16.
Pérez Ramírez
,
P. A.
, and
Utne
,
I. B.
,
2013
, “
Decision Support for Life Extension of Technical Systems Through Virtual Age Modelling
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
55
69
.10.1016/j.ress.2013.02.002
17.
Gummer
,
J. H.
, and
Obermoser
,
H.
,
2015
, “
Further Thoughts on Timing for Major Overhauls of Hydroelectric Equipment
,”
HYDRO International Conference and Exhibition 2015
, Bordeaux, France, Mar. 16–19, p.
10
.
18.
Gummer
,
J. H.
, and
Obermoser
,
H.
,
2008
, “
A New Approach to Defining Risk in Rehabilitation Work
,”
Int. J. Hydropower Dams
,
15
(
5
), pp.
58
63
.https://www.hydropowerdams.com/articles/a-new-approach-to-defining-risk-in-rehabilitation-work/
19.
Sumereder
,
C.
,
2008
, “
Statistical Lifetime of Hydro Generators and Failure Analysis
,”
IEEE Trans. Dielectrics Electr. Insul.
,
15
(
3
), pp.
678
685
.10.1109/TDEI.2008.4543104
20.
ESI Africa, 2020, Eight O&M steps to extend the longevity of hydropower plants, ESI Africa, Cape Town, accessed Aug. 10, 2021, https://www.esi-africa.com/industry-sectors/generation/eight-om-steps-to-extend-the-longevity-of-hydropower-plants/
21.
Long
,
R. W.
, and
Mitchell
,
D.
,
2014
, Equipment Life Extension and Modernization of Generator Circuit Breakers, Eaton,
Cleveland, OH
, accessed Aug. 22, 2022, https://www.eaton.com/content/dam/eaton/markets/healthcare/knowledge-center/white-paper/equipment-life-extension-and-modernization-of-generator-circuit-breakers.pdf
22.
EPRI,
1999
,
Hydro Life Extension Modernization Guides
, Volume 1 - Overall Process,
EPRI
,
Palo Alto, CA
.
23.
EPRI,
2000
,
Hydro Life Extension Modernization Guides
, Volume 2 - Hydromechanical Equipment,
EPRI
,
Palo Alto, CA
.
24.
EPRI,
2001
,
Hydro Life Extension Modernization Guides
, Volume, 3 - Electromechanical Equipment,
EPRI
,
Palo Alto, CA
.
25.
Object Management Group,
2011
,
Business Process Model and Notation (BPMN)
, Object Management Group, MA.
26.
Zhang
,
Z.
,
Si
,
X.
,
Hu
,
C.
, and
Lei
,
Y.
,
2018
, “
Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods
,”
Eur. J. Oper. Res.
,
271
(
3
), pp.
775
796
.10.1016/j.ejor.2018.02.033
27.
le Son
,
K.
,
Fouladirad
,
M.
, and
Barros
,
A.
,
2016
, “
Remaining Useful Lifetime Estimation and Noisy Gamma Deterioration Process
,”
Reliab. Eng. Syst. Saf.
,
149
, pp.
76
87
.10.1016/j.ress.2015.12.016
28.
Kan
,
M. S.
,
Tan
,
A. C. C.
, and
Mathew
,
J.
,
2015
, “
A Review on Prognostic Techniques for Non-Stationary and Non-Linear Rotating Systems
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
1
20
.10.1016/j.ymssp.2015.02.016
29.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation – A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.10.1016/j.ejor.2010.11.018
30.
Si
,
X.-S.
,
Wang
,
W.
,
Chen
,
M.-Y.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2013
, “
A Degradation Path-Dependent Approach for Remaining Useful Life Estimation With an Exact and Closed-Form Solution
,”
Eur. J. Oper. Res.
,
226
(
1
), pp.
53
66
.10.1016/j.ejor.2012.10.030
31.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
,
Chen
,
M.-Y.
, and
Zhou
,
D.-H.
,
2013
, “
A Wiener-Process-Based Degradation Model With a Recursive Filter Algorithm for Remaining Useful Life Estimation
,”
Mech. Syst. Signal Process.
,
35
(
1–2
), pp.
219
237
.10.1016/j.ymssp.2012.08.016
32.
Nelson
,
W. B.
,
2003
,
Applied Life Data Analysis
,
Wiley-Interscience
,
Hoboken, NJ
.
33.
Souza
,
G. F. M.
,
Caminada Netto
,
A.
,
Melani
,
A. H. A.
,
Michalski
,
M. A. C.
, and
Silva
,
R. F.
,
2021
,
Reliability Analysis and Asset Management of Engineering Systems
, 1st ed.,
Elsevier
,
Amsterdam, The Netherlands
.
34.
Melani
,
A.
,
Martha de Souza
,
G. F.
,
Murad
,
C. A.
,
Caminada Netto
,
A.
, and
Nabeta
,
S. I.
,
2017
, “
Petri Net Based Reliability Analysis of Thermoelectric Plant Cooling Tower
,”
Procceedings of the 24th ABCM International Congress of Mechanical Engineering
,
ABCM
,
Curitiba, Brazil
, Dec. 3–8, pp.
1
10
.
35.
Chmura
,
L.
,
Morshuis
,
P. H. F.
,
Smit
,
J. J.
, and
Janssen
,
A.
,
2015
, “
Life-Data Analysis for Condition Assessment of High-Voltage Assets
,”
IEEE Electr. Insul. Mag.
,
31
(
5
), pp.
33
43
.10.1109/MEI.2015.7214443
36.
R Mohan
,
B.
,
2017
, “
Life Data Analysis of Server Virtualized System
,”
Int. J. Geomate
,
13
(
36
), pp. 108–115.10.21660/2017.36.2855
37.
Melani
,
A. H. A.
, and
Souza
,
G. F. M.
,
2020
, “
Obtaining Fault Trees Through SysML Diagrams: A MBSE Approach for Reliability Analysis
,”
Annual Reliability and Maintainability Symposium, Palm Springs
, CA, Jan. 27–30, pp.
1
5
.
38.
Melani
,
A. H. A.
,
Murad
,
C. A.
,
Caminada Netto
,
A.
,
Souza
,
G. F. M.
, and
Nabeta
,
S. I.
,
2019
, “
Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower Through Generalized Stochastic Petri Nets
,”
Energies (Basel)
,
12
(
10
), p.
1951
.10.3390/en12101951
39.
Frohwein
,
H. I.
,
Lambert
,
J. H.
, and
Haimes
,
Y. Y.
,
1999
, “
Alternative Measures of Risk of Extreme Events in Decision Trees
,”
Reliab. Eng. Syst. Saf.
,
66
(
1
), pp.
69
84
.10.1016/S0951-8320(99)00022-8
You do not currently have access to this content.