Abstract

The use of three-dimensional (3D) printing for lattice structures has led to advances in diverse applications benefitting from mechanically efficient designs. Three-dimensional printed lattices are often used to carry loads, however, printing defects and inconsistencies potentially hinder performance. Here, we investigate the design, fabrication, mechanics, and reliability of lattices with repeating cubic unit cells using probabilistic analysis. Lattices were designed with 500 μm diameter beams and unit cell lengths from 0.8 mm to 1.6 mm. Designs were printed with stereolithography and had average beam diameters from 509 μm to 622 μm, thereby demonstrating a deviation from design intentions. Mechanical experiments were conducted and demonstrated an exponential increase in yield stress for lattice relative density that facilitated probabilistic failure analysis. Sensitivity analysis demonstrated lattice mechanics were most sensitive to fluctuations for beam diameter (74%) and second to lattice yield stress (8%) for lattices with 1.6 mm unit cells, while lattices with smaller 1.0 mm unit cells were most sensitive to yield stress (48%) and second to beam diameter (43%). The methodological framework is generalizable to further 3D printed lattice systems, and findings provide new insights linking design, fabrication, mechanics, and reliability for improved system design that is crucial for engineers to consider as 3D printing becomes more widely adopted.

References

1.
Shahrubudin
,
N.
,
Lee
,
T. C.
, and
Ramlan
,
R.
,
2019
, “
An Overview on 3D Printing Technology: Technological, Materials, and Applications
,”
Procedia Manuf.
,
35
, pp.
1286
1296
.10.1016/j.promfg.2019.06.089
2.
Egan
,
P.
,
Ferguson
,
S.
, and
Shea
,
K.
,
2017
, “
Design of Hierarchical 3D Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering
,”
ASME J. Mech. Des.
,
139
(
6
), p.
061401
.10.1115/1.4036396
3.
Schmidleithner
,
C.
, and
Kalaskar
,
D. M.
,
2018
, “
Stereolithography
,” 3D Printing, D. Cvetković, ed.,
IntechOpen
, London, UK, pp.
1
22
.
4.
Jasveer
,
S.
, and
Jianbin
,
X.
,
2018
, “
Comparison of Different Types of 3D Printing Technologies
,”
Int. J. Sci. Res. Publ. (IJSRP)
,
8
(
4
), pp.
1
9
.10.29322/IJSRP.8.4.2018.p7602
5.
Egan
,
P. F.
,
2019
, “
Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook
,”
Materials
,
12
(
15
), p.
2355
.10.3390/ma12152355
6.
Okarma
,
K.
,
Fastowicz
,
J.
,
Lech
,
P.
, and
Lukin
,
V.
,
2020
, “
Quality Assessment of 3D Printed Surfaces Using Combined Metrics Based on Mutual Structural Similarity Approach Correlated With Subjective Aesthetic Evaluation
,”
Appl. Sci.
,
10
(
18
), p.
6248
.10.3390/app10186248
7.
Egan
,
P. F.
,
Bauer
,
I.
,
Shea
,
K.
, and
Ferguson
,
S. J.
,
2019
, “
Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031703
.10.1115/1.4042213
8.
Garrard
,
J. M.
, and
Abedi
,
R.
,
2020
, “
Statistical Volume Elements for the Characterization of Angle-Dependent Fracture Strengths in Anisotropic Microcracked Materials
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
2
), p.
021008
.10.1115/1.4044607
9.
Egan
,
P.
,
Wang
,
X.
,
Greutert
,
H.
,
Shea
,
K.
,
Wuertz-Kozak
,
K.
, and
Ferguson
,
S.
,
2019
, “
Mechanical and Biological Characterization of 3D Printed Lattices
,”
3D Print. Addit. Manuf.
,
6
(
2
), pp.
73
81
.10.1089/3dp.2018.0125
10.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.10.1115/1.4037305
11.
Wu
,
H.-C.
, and
Chen
,
T.-C. T.
,
2018
, “
Quality Control Issues in 3D-Printing Manufacturing: A Review
,”
Rapid Prototyping J.
,
24
(
3
), pp.
607
614
.10.1108/RPJ-02-2017-0031
12.
Alghamdi
,
A.
,
Maconachie
,
T.
,
Downing
,
D.
,
Brandt
,
M.
,
Qian
,
M.
, and
Leary
,
M.
,
2020
, “
Effect of Additive Manufactured Lattice Defects on Mechanical Properties: An Automated Method for the Enhancement of Lattice Geometry
,”
Int. J. Adv. Manuf. Technol.
,
108
(
3
), pp.
957
971
.10.1007/s00170-020-05394-8
13.
Lu
,
N.
,
Noori
,
M.
, and
Liu
,
Y.
,
2017
, “
Fatigue Reliability Assessment of Welded Steel Bridge Decks Under Stochastic Truck Loads Via Machine Learning
,”
J. Bridge Eng.
,
22
(
1
), p.
04016105
.10.1061/(ASCE)BE.1943-5592.0000982
14.
Mashhadi
,
A. R.
,
Esmaeilian
,
B.
, and
Behdad
,
S.
,
2015
, “
Uncertainty Management in Remanufacturing Decisions: A Consideration of Uncertainties in Market Demand, Quantity, and Quality of Returns
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
1
(
2
), p.
021007
.10.1115/1.4029759
15.
Wang
,
Z.
,
Liu
,
P.
,
Ji
,
Y.
,
Mahadevan
,
S.
,
Horstemeyer
,
M. F.
,
Hu
,
Z.
,
Chen
,
L.
, and
Chen
,
L.-Q.
,
2019
, “
Uncertainty Quantification in Metallic Additive Manufacturing Through Physics-Informed Data-Driven Modeling
,”
JOM
,
71
(
8
), pp.
2625
2634
.10.1007/s11837-019-03555-z
16.
Briguiet
,
G.
, and
Egan
,
P. F.
,
2020
, “
Structure, Process, and Material Influences for 3D Printed Lattices Designed With Mixed Unit Cells
,”
ASME
Paper No. DETC2020-22575.10.1115/DETC2020-22575
17.
Alifui-Segbaya
,
F.
,
Bowman
,
J.
,
White
,
A. R.
,
Varma
,
S.
,
Lieschke
,
G. J.
, and
George
,
R.
,
2018
, “
Toxicological Assessment of Additively Manufactured Methacrylates for Medical Devices in Dentistry
,”
Acta Biomater.
,
78
, pp.
64
77
.10.1016/j.actbio.2018.08.007
18.
Gorguluarslan
,
R. M.
,
Choi
,
S.-K.
, and
Saldana
,
C. J.
,
2017
, “
Uncertainty Quantification and Validation of 3D Lattice Scaffolds for Computer-Aided Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
428
440
.10.1016/j.jmbbm.2017.04.011
19.
Zhang
,
J.
,
Wu
,
M.
,
Peng
,
Q.
,
Dixit
,
U. S.
, and
Gu
,
P.
,
2020
, “
Design for Interface Stiffness of Mechanical Products Using Integrated Simulation and Optimization Under Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
2
), p.
021006
.10.1115/1.4045556
20.
Gorguluarslan
,
R. M.
,
Gandhi
,
U. N.
,
Mandapati
,
R.
, and
Choi
,
S.-K.
,
2016
, “
Design and Fabrication of Periodic Lattice-Based Cellular Structures
,”
Comput.-Aided Des. Appl.
,
13
(
1
), pp.
50
62
.10.1080/16864360.2015.1059194
21.
Egan
,
P. F.
,
Gonella
,
V. C.
,
Engensperger
,
M.
,
Ferguson
,
S. J.
, and
Shea
,
K.
,
2017
, “
Computationally Designed Lattices With Tuned Properties for Tissue Engineering Using 3D Printing
,”
PLoS One
,
12
(
8
), p.
e0182902
.10.1371/journal.pone.0182902
22.
Bai
,
L.
,
Yi
,
C.
,
Chen
,
X.
,
Sun
,
Y.
, and
Zhang
,
J.
,
2019
, “
Effective Design of the Graded Strut of BCC Lattice Structure for Improving Mechanical Properties
,”
Materials
,
12
(
13
), p.
2192
.10.3390/ma12132192
23.
Ashby
,
M. F.
, and
Cebon
,
D.
,
1993
, “
Materials Selection in Mechanical Design
,”
J. Phys. IV
,
3
(
C7
), pp.
C7-1
C7-9
.10.1051/jp4:199370
24.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
, Cambridge.
25.
Moniruzzaman
,
M.
,
O'Neal
,
C.
,
Bhuiyan
,
A.
, and
Egan
,
P. F.
,
2020
, “
Design and Mechanical Testing of 3D Printed Hierarchical Lattices Using Biocompatible Stereolithography
,”
Designs
,
4
(
3
), p.
22
.10.3390/designs4030022
26.
Dong
,
G.
,
Wijaya
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures
,”
Addit. Manuf.
,
19
, pp.
62
72
.10.1016/j.addma.2017.11.004
27.
Sakata
,
S.-I.
, and
Yamauchi
,
Y.
,
2019
, “
Stochastic Elastic Property Evaluation With Stochastic Homogenization Analysis of a Resin Structure Made Using the Fused Deposition Modeling Method
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
3
), p.
030901
.10.1115/1.4043398
28.
Lozanovski
,
B.
,
Downing
,
D.
,
Tran
,
P.
,
Shidid
,
D.
,
Qian
,
M.
,
Choong
,
P.
,
Brandt
,
M.
, and
Leary
,
M.
,
2020
, “
A Monte Carlo Simulation-Based Approach to Realistic Modelling of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
32
, p.
101092
.10.1016/j.addma.2020.101092
29.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
30.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Yu
,
C.
,
Liu
,
Z.
,
Lian
,
Y.
,
Wolff
,
S.
,
Cao
,
J.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Modeling Process-Structure-Property Relationships for Additive Manufacturing
,”
Front. Mech. Eng.
,
13
(
4
), pp.
482
492
.10.1007/s11465-018-0505-y
31.
Sullivan
,
T. J.
,
2015
,
Introduction to Uncertainty Quantification
,
Springer
, Germany.
32.
Soize
,
C.
,
2017
,
Uncertainty Quantification
,
Springer
, France.
33.
Richardson
,
A. D.
, Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A., Lasslop, G., and Reichstein, M.,
2012
, “
Uncertainty Quantification
,”
Eddy Covariance
,
Springer
, Belgium, pp.
173
209
.
34.
Dias
,
J. P.
,
Ekwaro-Osire
,
S.
,
Cunha
,
A.
,
Dabetwar
,
S.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Endeshaw
,
H. B.
,
2019
, “
Parametric Probabilistic Approach for Cumulative Fatigue Damage Using Double Linear Damage Rule Considering Limited Data
,”
Int. J. Fatigue
,
127
, pp.
246
258
.10.1016/j.ijfatigue.2019.06.011
35.
Nazir
,
A.
, and
Jeng
,
J.-Y.
,
2020
, “
A High-Speed Additive Manufacturing Approach for Achieving High Printing Speed and Accuracy
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
14
), pp.
2741
2749
.10.1177/0954406219861664
36.
Hällgren
,
S.
,
Pejryd
,
L.
, and
Ekengren
,
J.
,
2016
, “
3D Data Export for Additive Manufacturing-Improving Geometric Accuracy
,”
Procedia CIRP
,
50
, pp.
518
523
.10.1016/j.procir.2016.05.046
37.
Salmi
,
M.
,
Paloheimo
,
K.-S.
,
Tuomi
,
J.
,
Wolff
,
J.
, and
Mäkitie
,
A.
,
2013
, “
Accuracy of Medical Models Made by Additive Manufacturing (Rapid Manufacturing)
,”
J. Cranio-Maxillofac. Surg.
,
41
(
7
), pp.
603
609
.10.1016/j.jcms.2012.11.041
38.
Turner
,
B. N.
, and
Gold
,
S. A.
,
2015
, “
A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness
,”
Rapid Prototyping J.
,
21
(
3
), pp.
250
261
.10.1108/RPJ-02-2013-0017
39.
Torres
,
J.
,
Cole
,
M.
,
Owji
,
A.
,
DeMastry
,
Z.
, and
Gordon
,
A. P.
,
2016
, “
An Approach for Mechanical Property Optimization of Fused Deposition Modeling With Polylactic Acid Via Design of Experiments
,”
Rapid Prototyping J.
,
22
(
2
), pp.
387
404
.10.1108/RPJ-07-2014-0083
40.
Keleş
,
Ö.
,
Blevins
,
C. W.
, and
Bowman
,
K. J.
,
2017
, “
Effect of Build Orientation on the Mechanical Reliability of 3D Printed ABS
,”
Rapid Prototyping J.
,
23
(
2
), pp.
320
328
.10.1108/RPJ-09-2015-0122
41.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
1
), p.
011002
.10.1115/1.4048867
42.
Choi
,
S.-K.
,
Gorguluarslan
,
R. M.
,
Park
,
S.-I.
,
Stone
,
T.
,
Moon
,
J. K.
, and
Rosen
,
D. W.
,
2015
, “
Simulation-Based Uncertainty Quantification for Additively Manufactured Cellular Structures
,”
J. Electron. Mater.
,
44
(
10
), pp.
4035
4041
.10.1007/s11664-015-3841-2
43.
Singh
,
S.
,
Singh
,
M.
,
Prakash
,
C.
,
Gupta
,
M. K.
,
Mia
,
M.
, and
Singh
,
R.
,
2019
, “
Optimization and Reliability Analysis to Improve Surface Quality and Mechanical Characteristics of Heat-Treated Fused Filament Fabricated Parts
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1521
1536
.10.1007/s00170-018-03276-8
44.
Samykano
,
M.
,
Selvamani
,
S.
,
Kadirgama
,
K.
,
Ngui
,
W.
,
Kanagaraj
,
G.
, and
Sudhakar
,
K.
,
2019
, “
Mechanical Property of FDM Printed ABS: Influence of Printing Parameters
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
2779
2796
.10.1007/s00170-019-03313-0
45.
Keleş
,
Ö.
,
Anderson
,
E. H.
, and
Huynh
,
J.
,
2018
, “
Mechanical Reliability of Short Carbon Fiber Reinforced ABS Produced Via Vibration Assisted Fused Deposition Modeling
,”
Rapid Prototyping J.
,
24
(
9
), pp.
1572
1578
.10.1108/RPJ-12-2017-0247
46.
Suiker
,
A.
,
2018
, “
Mechanical Performance of Wall Structures in 3D Printing Processes: Theory, Design Tools and Experiments
,”
Int. J. Mech. Sci.
,
137
, pp.
145
170
.10.1016/j.ijmecsci.2018.01.010
47.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.10.1016/j.cirp.2016.05.004
48.
Ekwaro-Osire
,
S.
,
Gonçalves
,
A. C.
, and
Alemayehu
,
F. M.
,
2017
,
Probabilistic Prognostics and Health Management of Energy Systems
,
Springer
, New York.
49.
Gibson
,
L. J.
,
2003
, “
Cellular Solids
,”
MRS Bull.
,
28
(
4
), pp.
270
274
.10.1557/mrs2003.79
50.
Wasserman
,
L.
,
2013
,
All of Statistics: A Concise Course in Statistical Inference
,
Springer Science & Business Media
, New York.
51.
Wanki
,
G.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
, and
Cunha
,
A.
,
2020
, “
Uncertainty Quantification With Sparsely Characterized Parameters: An Example Applied to Femoral Stem Mechanics
,”
ASME J. Verif., Validation, Uncertainty Quantif.
,
5
(
3
), p.
031005
.10.1115/1.4048749
52.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
2006
,
Methods of Structural Safety
,
Courier Corporation
, Mineola, NY.
53.
Alfredo
,
H.-S. A.
, and
Wilson
,
H.
,
1975
,
Probability Concepts in Engineering Planning and Design
,
Wiley
, New York.
54.
Ekwaro-Osire
,
S.
,
2016
, “
Probabilistic Approach to Determine the Efficiency of Ocean Wave Energy Conversion Systems
,”
ASME
Paper No. IMECE2016-67942.10.1115/IMECE2016-67942
55.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
, New York.
56.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
, New York.
57.
Kulkarni
,
N.
,
Ekwaro-Osire
,
N. S.
, and
Egan
,
P. F.
,
2020
, “
Mechanical Testing and Reliability Analysis for 3D Printed Cubic Lattices
,”
ASME
Paper No. IMECE2020-23694.10.1115/IMECE2020-23694
You do not currently have access to this content.