Abstract

Accurate identification and modeling of process maps in additive manufacturing remains a pertinent challenge. To ensure high quality and reliability of the finished product researchers, rely on models that entail the physics of the process as a computer code or conduct laboratory experiments, which are expensive and oftentimes demand significant logistic and overheads. Physics-based computational modeling has shown promise in alleviating the aforementioned challenge, albeit with limitations like physical approximations, model-form uncertainty, and limited experimental data. This calls for modeling methods that can combine limited experimental and simulation data in a computationally efficient manner, in order to achieve the desired properties in the manufactured parts. In this paper, we focus on demonstrating the impact of probabilistic modeling and uncertainty quantification on powder-bed fusion (PBF) additive manufacturing by focusing on the following three milieu: (a) accelerating the parameter development processes associated with laser powder bed fusion additive manufacturing process of metals, (b) quantifying uncertainty and identifying missing physical correlations in the computational model, and (c) transferring learned process maps from a source to a target process. These tasks demonstrate the application of multifidelity modeling, global sensitivity analysis, intelligent design of experiments, and deep transfer learning for a meso-scale meltpool model of the additive manufacturing process.

References

1.
Leary
,
M.
,
2020
, “
Chapter 11—Powder Bed Fusion
,”
Design for Additive Manufacturing
,
M.
Leary
, ed., Additive Manufacturing Materials and Technologies,
Elsevier
, Kragujevac, Serbia, pp.
295
319
.
2.
Nakapkin
,
D. S.
,
Zakirov
,
A. V.
,
Belousov
,
S. A.
,
Bogdanova
,
M. V.
,
Korneev
,
B. A.
,
Stepanov
,
A. E.
,
Perepelkina
,
A. Y.
,
Levchenko
,
V. D.
,
Potapkin
,
B. V.
, and
Meshkov
,
A.
,
2019
, “
Finding Optimal Parameter Ranges for Laser Powder Bed Fusion with Predictive Modeling at Mesoscale
,”
Sim-AM
2019: II International Conference on Simulation for Additive Manufacturing,
CIMNE
, Pavia, Italy, pp.
297
308
.https://www.researchgate.net/publication/341399010_Finding_Optimal_Parameter_Ranges_for_Laser_Powder_Bed_Fusion_with_Predictive_Modeling_at_Mesoscale
3.
Chennimalai Kumar
,
N.
,
Zhang
,
Y.
,
Gupta
,
V.
,
Dheeradhada
,
V.
,
Dial
,
L.
,
Khan
,
G.
,
Vinciquerra
,
A.
, and
Wang
,
L.
,
2020
, “
Applications of Intelligent Experimental Design for Additive Manufacturing
,”
AIAA
Paper No. 2020-0679. 10.2514/6.2020-0679
4.
Dial
,
L. C.
,
Ghosh
,
S.
,
Kumar
,
N. C.
,
Kumar
,
V. S.
,
Gupta
,
V. K.
,
Hanlon
,
T.
,
Dheeradhada
,
V. S.
,
Aggour
,
K. S.
, and
Vinciquerra
,
J.
,
2019
, “
A Physics-Informed Data Driven Approach to Additive Manufacturing Parameter Optimization
,”
Adv. Mater. Process.
,
177
(
7
), pp.
16
21
.
5.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
6.
Lee
,
S.
,
Peng
,
J.
,
Shin
,
D.
, and
Choi
,
Y. S.
,
2019
, “
Data Analytics Approach for Melt-Pool Geometries in Metal Additive Manufacturing
,”
Sci. Technol. Adv. Mater.
,
20
(
1
), pp.
972
978
.10.1080/14686996.2019.1671140
7.
Tan
,
C.
,
Sun
,
F.
,
Kong
,
T.
,
Zhang
,
W.
,
Yang
,
C.
, and
Liu
,
C.
,
2018
, “
A Survey on Deep Transfer Learning
,”
International Conference on Artificial Neural Networks
, Rhodes, Greece,
Springer
, Berlin, pp.
270
279
.
8.
Zhu
,
Z.
,
Anwer
,
N.
,
Huang
,
Q.
, and
Mathieu
,
L.
,
2018
, “
Machine Learning in Tolerancing for Additive Manufacturing
,”.
CIRP Ann.
,
67
(
1
), pp.
157
160
.10.1016/j.cirp.2018.04.119
9.
Bai
,
X.
,
Zhang
,
H.
, and
Wang
,
G.
,
2013
, “
Improving Prediction Accuracy of Thermal Analysis for Weld-Based Additive Manufacturing by Calibrating Input Parameters Using IR Imaging
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1087
1095
.10.1007/s00170-013-5102-y
10.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
.10.1016/j.mfglet.2019.02.001
11.
Morris
,
C.
, and
Seepersad
,
C. C.
,
2018
, “
Design Exploration of Reliably Manufacturable Materials and Structures With Applications to a Microstereolithography System
,”
ASME
Paper No. DETC2018-85272.10.1115/DETC2018-85272
12.
Wang
,
Y.
,
Blache
,
R.
,
Zheng
,
P.
, and
Xu
,
X.
,
2018
, “
A Knowledge Management System to Support Design for Additive Manufacturing Using Bayesian Networks
,”
ASME J. Mech. Des.
,
140
(
5
), p. 051701. 10.1115/1.4039201
13.
Zakirov
,
A.
,
Belousov
,
S.
,
Bogdanova
,
M.
,
Korneev
,
B.
,
Stepanov
,
A.
,
Perepelkina
,
A.
,
Levchenko
,
V.
,
Meshkov
,
A.
, and
Potapkin
,
B.
,
2020
, “
Predictive Modeling of Laser and Electron Beam Powder Bed Fusion Additive Manufacturing of Metals at the Mesoscale
,”
Addit. Manuf.
,
35
, p.
101236
.10.1016/j.addma.2020.101236
14.
Sun
,
X.
,
Hou
,
Z.
,
Sumita
,
M.
,
Ishihara
,
S.
,
Tamura
,
R.
, and
Tsuda
,
K.
,
2019
, “
Leveraging Legacy Data to Accelerate Materials Design via Preference Learning
,”. arXiv preprint arXiv:1910.11516.
15.
Ghosh
,
S.
,
Pandita
,
P.
,
Atkinson
,
S.
,
Subber
,
W.
,
Zhang
,
Y.
,
Kumar
,
N. C.
,
Chakrabarti
,
S.
, and
Wang
,
L.
,
2020
, “
Advances in Bayesian Probabilistic Modeling for Industrial Applications
,”
ASCE-ASME J. Risk Uncert Eng. Syst. Part B Mech. Eng.
,
6
(
3
), p. 030904.10.1115/1.4046747
16.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
17.
Kristensen
,
J.
,
Subber
,
W.
,
Zhang
,
Y.
,
Ghosh
,
S.
,
Kumar
,
N. C.
,
Khan
,
G.
, and
Wang
,
L.
,
2019
, “
Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization
,”
Design Engineering and Manufacturing
,
IntechOpen
, Rijeka, Croatia.
18.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), 100909.10.1115/1.4007573
19.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p. 100908.10.1115/1.4007390
20.
Lv
,
L.
,
Zong
,
C.
,
Zhang
,
C.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
Multi-Fidelity Surrogate Model Based on Canonical Correlation Analysis and Least Square
,”
ASME J. Mech. Des.
,
143
(
2
), pp.
1
27
.10.1115/1.4047686
21.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
22.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p. 081004.10.1115/1.4043798
23.
Mani
,
M.
,
Feng
,
S.
,
Lane
,
B.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,” Int. J. Prod. Res., 55(5), pp. 1400--1418.
24.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p. 040801.10.1115/1.4042789
25.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p. 060801.10.1115/1.4028540
26.
Tapia
,
G.
,
Elwany
,
A.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
.10.1016/j.addma.2016.05.009
27.
Tapia
,
G.
,
Johnson
,
L.
,
Franco
,
B.
,
Karayagiz
,
K.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p. 071002.10.1115/1.4035898
28.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.10.1038/nature14539
29.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press, Cambridge, MA
.
30.
Yan
,
X.
,
Zhu
,
J.
,
Kuang
,
M.
, and
Wang
,
X.
,
2019
, “
Aerodynamic Shape Optimization using a Novel Optimizer Based on Machine Learning Techniques
,”
Aerosp. Sci. Technol.
,
86
, pp.
826
835
.10.1016/j.ast.2019.02.003
31.
Kaya
,
M.
, and
Hajimirza
,
S.
,
2019
, “
Using a Novel Transfer Learning Method for Designing Thin Film Solar Cells with Enhanced Quantum Efficiencies
,”
Sci. Rep.
,
9
(
1
), pp.
1
10
.10.1038/s41598-019-41316-9
32.
Wang
,
Q.
,
Yang
,
L.
, and
Rao
,
Y.
,
2021
, “
Establishment of a Generalizable Model on a Small-Scale Dataset to Predict the Surface Pressure Distribution of Gas Turbine Blades
,”
Energy
,
214
, p.
118878
.10.1016/j.energy.2020.118878
33.
De
,
S.
,
Britton
,
J.
,
Reynolds
,
M.
,
Skinner
,
R.
,
Jansen
,
K.
, and
Doostan
,
A.
,
2020
, “
On Transfer Learning of Neural Networks Using Bi-Fidelity Data for Uncertainty Propagation
,”
Int. J. Uncertain. Quantif.
,
10
(
6
), pp.
543
573
.10.1615/Int.J.UncertaintyQuantification.2020033267
34.
Chakraborty
,
S.
,
2021
, “
Transfer Learning Based Multi-Fidelity Physics Informed Deep Neural Network
,”
J. Comput. Phys.
,
426
, p.
109942
.10.1016/j.jcp.2020.109942
35.
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
Multiscale Modeling of Powder Bed–Based Additive Manufacturing
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
93
123
.10.1146/annurev-matsci-070115-032158
36.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
37.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons, West Sussex, UK
.
38.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
39.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models (With Discussion)
,”
J. R. Stat. Soc. (Ser. B
),
68
, pp.
425
464
.https://doi.org/10.1111/1467-9868.00294
40.
Higdon
,
D.
,
Nakhleh
,
C.
,
Gattiker
,
J.
, and
Williams
,
B.
,
2008
, “
A Bayesian Calibration Approach to the Thermal Problem
,”
Computer Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2431
2441
.10.1016/j.cma.2007.05.031
41.
Wang
,
L.
,
Fang
,
X.
,
Subramaniyan
,
A.
,
Jothiprasad
,
G.
,
Gardner
,
M.
,
Kale
,
A.
,
Akkaram
,
S.
,
Beeson
,
D.
,
Wiggs
,
G.
, and
Nelson
,
J.
,
2011
, “
Challenges in Uncertainty, Calibration, Validation and Predictability of Engineering Analysis Models
,”
ASME
Paper No. GT2011-46554.10.1115/GT2011-46554
42.
Liu, J. S.
, and Dai, C.,
2014
, “
Metropolis Jumping Rules
,”
Wiley
StatsRef: Statistics Reference Online, pp. 1–12.https://doi.org/10.1002/9781118445112.stat08237
43.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
John
,
Wiley & Sons, West Sussex, UK
.https://doi.org/10.1002/9780470770801.ch4
44.
Kristensen
,
J.
,
Ling
,
Y.
,
Asher
,
I.
, and
Wang
,
L.
,
2016
, “
Expected-Improvement-Based Methods for Adaptive Sampling in Multi-Objective Optimization Problems
,”
ASME
Paper No. DETC2016-59266.
10.1115/DETC2016-59266
45.
Ghosh
,
S.
,
Kristensen
,
J.
,
Zhang
,
Y.
,
Subber
,
W.
, and
Wang
,
L.
,
2019
, “
A Strategy for Adaptive Sampling of Multi-Fidelity Gaussian Processes to Reduce Predictive Uncertainty
,”
ASME
Paper No. DETC2019-98418.
10.1115/DETC2019-98418
46.
Goswami
,
S.
,
Anitescu
,
C.
,
Chakraborty
,
S.
, and
Rabczuk
,
T.
,
2020
, “
Transfer Learning Enhanced Physics Informed Neural Network for Phase-Field Modeling of Fracture
,”
Theor. Appl. Fract. Mech.
,
106
, p.
102447
.10.1016/j.tafmec.2019.102447
47.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.10.1109/TKDE.2009.191
48.
Lakshminarayanan
,
B.
,
Pritzel
,
A.
, and
Blundell
,
C.
,
2017
, “
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
, Long Beach, CA, pp.
6405
6416
.https://papers.nips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
49.
Bengio
,
Y.
,
2012
, “
Practical Recommendations for Gradient-Based Training of Deep Architectures
,”
Neural Networks: Tricks of the Trade
,
Springer
, Berlin, pp.
437
478
.
50.
Balaprakash
,
P.
,
Salim
,
M.
,
Uram
,
T. D.
,
Vishwanath
,
V.
, and
Wild
,
S. M.
,
2018
, “
Deephyper: Asynchronous Hyperparameter Search for Deep Neural Networks
,”
IEEE 25th international Conference on High Performance Computing (HiPC)
,
IEEE
, Bengaluru, India, Dec. 17–20, pp.
42
51
. 10.1109/HiPC.2018.00014
51.
Agarap
,
A. F.
,
2018
, “
Deep Learning Using Rectified Linear Units (Relu)
,” arXiv preprint arXiv:1803.08375.
52.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
, Fort Lauderdale, FL, pp.
315
323
.https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
53.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
International Conference on Machine Learning
,
PMLR
, Lille, France, pp.
448
456
.
You do not currently have access to this content.