This paper presents a reliability analysis method for automated vehicles equipped with adaptive cruise control (ACC) and autonomous emergency braking (AEB) systems to avoid collision with an obstacle in front of the vehicle. The proposed approach consists of two main elements, namely uncertainty modeling of traffic conditions and model-based reliability analysis. In the uncertainty modeling step, a recently developed Gaussian mixture copula (GMC) method is employed to accurately represent the uncertainty in the road traffic conditions using the real-world data, and to capture the complicated correlations between different variables. Based on the uncertainty modeling of traffic conditions, an adaptive Kriging surrogate modeling method with an active learning function is then used to efficiently and accurately evaluate the collision-avoidance reliability of an automated vehicle. The application of the proposed method to the Department of Transportation Safety Pilot Model Deployment database and an in-house built Advanced Driver Assist Systems with ACC and AEB controllers demonstrate the effectiveness of the proposed method in evaluating the collision-avoidance reliability.

References

1.
Fagnant
,
D. J.
, and
Kockelman
,
K.
,
2015
, “
Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations
,”
Transp. Res. Part A: Policy Pract.
,
77
, pp.
167
181
.
2.
Ioannou
,
P. A.
, and
Chien
,
C.-C.
,
1993
, “
Autonomous Intelligent Cruise Control
,”
IEEE Trans. Veh. Technol.
,
42
(
4
), pp.
657
672
.
3.
Stern
,
R. E.
,
Cui
,
S.
,
Delle Monache
,
M. L.
,
Bhadani
,
R.
,
Bunting
,
M.
,
Churchill
,
M.
,
Hamilton
,
N.
,
Haulcy
,
R.
,
Pohlmann
,
H.
,
Wu
,
F.
,
Piccoli
,
B.
,
Seibold
,
B.
,
Sprinkle
,
J.
, and
Work
,
D. B.
,
2018
, “
Dissipation of Stop-and-Go Waves Via Control of Autonomous Vehicles: Field Experiments
,”
Transp. Res. Part C: Emerging Technol.
,
89
, pp.
205
221
.
4.
Euro NCAP,
2015
, “
Euro, NCAP and Protocol, AEB VRU Test v1. 0.1
,” Euro, NCAP, Leuven, Belgium.
5.
Wu
,
C.
,
Peng
,
L.
,
Huang
,
Z.
,
Zhong
,
M.
, and
Chu
,
D.
,
2014
, “
A Method of Vehicle Motion Prediction and Collision Risk Assessment With a Simulated Vehicular Cyber Physical System
,”
Transp. Res. Part C: Emerging Technol.
,
47
, pp.
179
191
.
6.
Chang
,
Y.-Y.
,
Yu
,
C.-Y.
, and
Lee
,
L.-T.
,
2016
, “
Research of Vehicle-Mounted Detection and Collision Avoidance System Based on Dedicated Short Range Communications
,”
International Symposium on Computer, Consumer and Control
(
IS3C
), Xi'an, China, July 4–6, pp.
299
302
.
7.
Deng
,
C.
,
Wu
,
C.
,
Cao
,
S.
, and
Lyu
,
N.
, “
Modeling the Effect of Limited Sight Distance Through Fog on Car-Following Performance Using QN-ACTR Cognitive Architecture
,”
Transp. Res. Part F: Traffic Psychol. Behav.
(in press).
8.
Zhao
,
D.
,
Lam
,
H.
,
Peng
,
H.
,
Bao
,
S.
,
LeBlanc
,
D. J.
,
Nobukawa
,
K.
, and
Pan
,
C. S.
,
2017
, “
Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
3
), pp.
595
607
.
9.
Zhao
,
D.
,
Huang
,
X.
,
Peng
,
H.
,
Lam
,
H.
, and
LeBlanc
,
D. J.
,
2018
, “
Accelerated Evaluation of Automated Vehicles in Car-Following Maneuvers
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
3
), pp.
733
744
.
10.
Zhao
,
D.
,
Peng
,
H.
,
Bao
,
S.
,
Nobukawa
,
K.
,
LeBlanc
,
D.
, and
Pan
,
C.
,
2016
, “
Accelerated Evaluation of Automated Vehicles Using Extracted Naturalistic Driving Data
,”
Dyn. Veh. Roads Tracks
,
18
(
3
), pp.
287
296
.
11.
Huang
,
Z.
,
Lam
,
H.
,
LeBlanc
,
D. J.
, and
Zhao
,
D.
,
2017
, “
Accelerated Evaluation of Automated Vehicles Using Piecewise Mixture Models
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
9
), pp.
2845
2855
.
12.
Xu
,
Y.
,
Wang
,
J.
,
Zou
,
Y.
, and
Sun
,
J.
,
2018
, “
Accelerated Testing for Automated Vehicles Safety Evaluation in Cut-In Scenarios Based on Importance Sampling, Genetic Algorithm and Simulation Applications
,”
J. Intell. Connected Veh.
,
1
(
1
), pp.
28
38
.
13.
Huang
,
Z.
,
Guo
,
Y.
,
Arief
,
M.
,
Lam
,
H.
, and
Zhao
,
D.
,
2018
, “
A Versatile Approach to Evaluating and Testing Automated Vehicles Based on Kernel Methods
,”
Annual American Control Conference
(
ACC
), Milwaukee, WI, June 27–29, pp.
4796
4802
.https://www.researchgate.net/publication/320180255_A_Versatile_Approach_to_Evaluating_and_Testing_Automated_Vehicles_based_on_Kernel_Methods
14.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
15.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
16.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
501
521
.
17.
Fauriat
,
W.
, and
Gayton
,
N.
,
2014
, “
AK-SYS: An Adaptation of the AK-MCS Method for System Reliability
,”
Reliab. Eng. Syst. Saf.
,
123
, pp.
137
144
.
18.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
19.
Levinson
,
J.
,
Askeland
,
J.
,
Becker
,
J.
,
Dolson
,
J.
,
Held
,
D.
,
Kammel
,
S.
,
Kolter
,
J. Z.
,
Langer
,
D.
,
Pink
,
O.
,
Pratt
,
V.
, and
Sokolsky
,
M.
,
2011
, “
Towards Fully Autonomous Driving: Systems and Algorithms
,”
Intelligent Vehicles Symposium
(
IV
), Baden-Baden, Germany, June 5–9, pp.
163
168
.
20.
Lee
,
D. N.
,
1976
, “
A Theory of Visual Control of Braking Based on Information About Time-to-Collision
,”
Perception
,
5
(
4
), pp.
437
459
.
21.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.
22.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
23.
Kaempchen
,
N.
,
Schiele
,
B.
, and
Dietmayer
,
K.
,
2009
, “
Situation Assessment of an Autonomous Emergency Brake for Arbitrary Vehicle-to-Vehicle Collision Scenarios
,”
IEEE Trans. Intell. Transp. Syst.
,
10
(
4
), pp.
678
687
.
24.
Benekohal
,
R.
, and
Treiterer
,
J.
,
1988
, “
CarSim: Car-Following Model for Simulation of Traffic in Normal and Stop-and-Go Conditions
,”
Transp. Res. Record
,
1194
, pp.
99
111
.
25.
Seguro
,
J.
, and
Lambert
,
T.
,
2000
, “
Modern Estimation of the Parameters of the Weibull Wind Speed Distribution for Wind Energy Analysis
,”
J. Wind Eng. Ind. Aerodyn.
,
85
(
1
), pp.
75
84
.
26.
Cohen
,
A. C.
,
1965
, “
Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples
,”
Technometrics
,
7
(
4
), pp.
579
588
.
27.
Lai
,
C.
,
Xie
,
M.
, and
Murthy
,
D.
,
2003
, “
A Modified Weibull Distribution
,”
IEEE Trans. Reliab.
,
52
(
1
), pp.
33
37
.
28.
Coit
,
D. W.
, and
Jin
,
T.
,
2000
, “
Gamma Distribution Parameter Estimation for Field Reliability Data With Missing Failure Times
,”
IIE Trans.
,
32
(
12
), pp.
1161
1166
.
29.
Aban
,
I. B.
,
Meerschaert
,
M. M.
, and
Panorska
,
A. K.
,
2006
, “
Parameter Estimation for the Truncated Pareto Distribution
,”
J. Am. Stat. Assoc.
,
101
(
473
), pp.
270
277
.
30.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Du
,
X.
,
2016
, “
Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Part B
,
2
(
3
), p.
031005
.
31.
Wand
,
M. P.
, and
Jones
,
M. C.
,
1993
, “
Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation
,”
J. Am. Stat. Assoc.
,
88
(
422
), pp.
520
528
.
32.
Jones
,
M. C.
,
Marron
,
J. S.
, and
Sheather
,
S. J.
,
1996
, “
Progress in Data-Based Bandwidth Selection for Kernel Density Estimation
,”
Comput. Stat.
,
11
(
3
), pp.
337
381
.https://pdfs.semanticscholar.org/e06c/eca548d9984008959afcfc46802a731df472.pdf
33.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Bayesian Network Learning for Data-Driven Design
,”
ASCE-ASME J. Risk Uncertainty Part B
,
4
(
4
), p.
041002
.
34.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Time-Dependent Reliability Analysis Using a Vine-Arma Load Model
,”
ASCE-ASME J. Risk Uncertainty Part B
,
3
(
1
), p.
011007
.
35.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2019
, “
Probability Models for Data-Driven Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
, (in press).
36.
Sklar
,
A.
,
1973
, “
Random Variables, Joint Distribution Functions, and Copulas
,”
Kybernetika
,
9
(
6
), pp.
449
460
.https://dml.cz/bitstream/handle/10338.dmlcz/125838/Kybernetika_09-1973-6_2.pdf
37.
Embrechts
,
P.
,
Lindskog
,
F.
, and
McNeil
,
A.
,
2001
,
Modelling Dependence With Copulas, Rapport Technique
,
Departement de Mathematiques, Institut Federal de Technologie de Zurich
,
Zurich, Switzerland
.
38.
Zhang
,
W.
,
Wang
,
H.
,
Hartmann
,
C.
,
Weber
,
M.
, and
Schutte
,
C.
,
2014
, “
Applications of the Cross-Entropy Method to Importance Sampling and Optimal Control of Diffusions
,”
SIAM J. Sci. Comput.
,
36
(
6
), pp.
A2654
A2672
.
39.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
A Random Field Approach to Reliability Analysis With Random and Interval Variables
,”
ASCE-ASME J. Risk Uncertainty Part B
,
1
(
4
), p.
041005
.
40.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
41.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.
42.
Basudhar
,
A.
,
Missoum
,
S.
, and
Sanchez
,
A. H.
,
2008
, “
Limit State Function Identification Using Support Vector Machines for Discontinuous Responses and Disjoint Failure Domains
,”
Probab. Eng. Mech.
,
23
(
1
), pp.
1
11
.
43.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
44.
Rasmussen
,
C. E.
,
2004
, “
Gaussian Processes in Machine Learning
,”
Advanced Lectures on Machine Learning
,
Springer
, Cambridge, MA, pp.
63
71
.
45.
Lv
,
Z.
,
Lu
,
Z.
, and
Wang
,
P.
,
2015
, “
A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering
,”
Comput. Math. Appl.
,
70
(
5
), pp.
1182
1197
.
46.
Yang
,
X.
,
Liu
,
Y.
,
Gao
,
Y.
,
Zhang
,
Y.
, and
Gao
,
Z.
,
2015
, “
An Active Learning Kriging Model for Hybrid Reliability Analysis With Both Random and Interval Variables
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
1003
1016
.
47.
Yang
,
X.
,
Liu
,
Y.
,
Zhang
,
Y.
, and
Yue
,
Z.
,
2015
, “
Probability and Convex Set Hybrid Reliability Analysis Based on Active Learning Kriging Model
,”
Appl. Math. Modell.
,
39
(
14
), pp.
3954
3971
.
48.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
49.
Sadoughi
,
M. K.
,
Hu
,
C.
,
MacKenzie
,
C. A.
,
Eshghi
,
A. T.
, and
Lee
,
S.
,
2018
, “
Sequential Exploration-Exploitation With Dynamic Trade-Off for Efficient Reliability Analysis of Complex Engineered Systems
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
235
250
.
50.
Sadoughi
,
M. K.
,
Li
,
M.
,
Hu
,
C.
,
MacKenzie
,
C. A.
,
Lee
,
S.
, and
Eshghi
,
A. T.
,
2018
, “
A High-Dimensional Reliability Analysis Method for Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071401
.
51.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.
52.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
53.
Liu
,
Y.
,
Zhao
,
Y.
,
Dale
,
R.
, and
Li
,
X.
,
2017
, “
Development of Test Bench for Autonomous Emergency Braking System
,” University of Michigan-Dearborn, Dearborn, MI.
54.
Bezzina
,
D.
, and
Sayer
,
J.
,
2014
, “
Safety Pilot Model Deployment: Test Conductor Team Report
,” National Highway Traffic Safety Administration, The Intelligent Transportation Systems Joint Program Office, Washington, DC, Report No. DOT HS 812 171.
55.
Paciorek
,
C. J.
, and
Schervish
,
M. J.
,
2006
, “
Spatial Modelling Using a New Class of Nonstationary Covariance Functions
,”
Environmetrics
,
17
(
5
), pp.
483
506
.
56.
Kim
,
H.-M.
,
Mallick
,
B. K.
, and
Holmes
,
C. C.
,
2005
, “
Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes
,”
J. Am. Stat. Assoc.
,
100
(
470
), pp.
653
668
.
57.
Meyer
,
T. H.
,
2004
, “
The Discontinuous Nature of Kriging Interpolation for Digital Terrain Modeling
,”
Cartography Geogr. Inf. Sci.
,
31
(
4
), pp.
209
216
.
58.
Clark
,
D. L.
, Jr.
,
Bae
,
H.-R.
,
Gobal
,
K.
, and
Penmetsa
,
R.
,
2016
, “
Engineering Design Exploration Using Locally Optimized Covariance Kriging
,”
AIAA J.
,
54
(
10
), pp.
3160
3175
.
59.
Xiong
,
Y.
,
Chen
,
W.
,
Apley
,
D.
, and
Ding
,
X.
,
2007
, “
A Non-Stationary Covariance-Based Kriging Method for Metamodelling in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
71
(
6
), pp.
733
756
.
60.
Devathi
,
H.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Snap-Through Buckling Reliability Analysis Under Spatiotemporal Variability and Epistemic Uncertainty
,”
AIAA J.
,
54
(
12
), pp.
3981
3993
.
61.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2001
, “
Neural-Network-Based Reliability Analysis: A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
1–2
), pp.
113
132
.
You do not currently have access to this content.