Abstract

This research investigates the application of explainable quantum machine learning (QML) for predictive maintenance in the railroad industry. By utilizing ground-penetrating radar (GPR) data to characterize subsurface track conditions (ballast fouling index, ballast thickness index, layer roughness index, and moisture likelihood index), a quantum neural network (QNN) model was developed to predict track geometry (profile and alignment) defects in a Class 3 railroad track. Shapley additive explanations (SHAP) were employed to analyze the feature importance and the model’s decision-making processes to ensure model interpretability. The QNN model correctly predicted 42 out of 55 test data points. SHAP analysis identified the ballast fouling index and layer roughness index as the most important parameters, aligning with engineering expectations.

References

1.
Lee
,
J. S.
,
Yeo
,
I.-H.
, and
Bae
,
Y.
,
2024
, “
A Stochastic Track Maintenance Scheduling Model Based on Deep Reinforcement Learning Approaches
,”
Reliab. Eng. Syst. Saf.
,
241
, p.
109709
.10.1016/j.ress.2023.109709
2.
Attoh-Okine
,
N.
,
2017
,
Big Data and Differential Privacy: Analysis Strategies for Railway Track
, 1st ed.,
Wiley Inc., Hoboken, NJ
.
3.
Xie
,
J.
,
Huang
,
J.
,
Zeng
,
C.
,
Jiang
,
S. H.
, and
Podlich
,
N.
,
2020
, “
Systematic Literature Review on Data-Driven Models for Predictive Maintenance of Rail-Way Track: Implications in Geotechnical Engineering
,”
Geosciences
,
10
(
11
), p.
425
.10.3390/geosciences10110425
4.
Bukhsh
,
Z. A.
,
Saeed
,
A.
,
Stipanovic
,
I.
, and
Doree
,
A. G.
,
2019
, “
Predictive Maintenance Using Tree-Based Classification Techniques: A Case of Railway Switches
,”
Transp. Res. Part C.
,
101
, pp.
35
54
.10.1016/j.trc.2019.02.001
5.
Sresakoolchai
,
J.
, and
Kaewunruen
,
S.
,
2022
, “
Railway Defect Detection Based on Track Geometry Using Supervised and Unsupervised Machine Learning
,”
Struct. Health Monit.
,
21
(
4
), pp.
1757
1767
.10.1177/14759217211044492
6.
Mohammadi
,
R.
,
He
,
Q.
,
Ghofrani
,
F.
,
Pathak
,
A.
, and
Aref
,
A.
,
2019
, “
Exploring the Impact of Foot-by-Foot Track Geometry on the Occurrence of Rail Defects
,”
Transp. Res. Part C: Emerging Technol.
,
102
, pp.
153
172
.10.1016/j.trc.2019.03.004
7.
Krummenacher
,
G.
,
Ong
,
C. S.
,
Koller
,
S.
,
Kobayashi
,
S.
, and
Buhmann
,
J. M.
,
2018
, “
Wheel Defect Detection With Machine Learning
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
4
), pp.
1176
1187
.10.1109/TITS.2017.2720721
8.
Kou
,
L.
,
Qin
,
Y.
,
Zhao
,
X.
, and
Chen
,
X.
,
2020
, “
A Multi-Dimension End-to- End CNN Model for Rotating Devices Fault Diagnosis on High-Speed Train Bogie
,”
IEEE Trans. Veh. Technol.
,
69
(
3
), pp.
2513
2524
.10.1109/TVT.2019.2955221
9.
Bai
,
Y.
,
Yang
,
J.
,
Wang
,
J.
,
Zhao
,
Y.
, and
Li
,
Q.
,
2021
, “
Image Representation of Vibration Signals and Its Application in Intelligent Compound Fault Diagnosis in Railway Vehicle Wheelset-Axlebox Assemblies
,”
Mech. Syst. Signal Process.
,
152
, p.
107421
.10.1016/j.ymssp.2020.107421
10.
Wang
,
Q.
,
Bu
,
S.
, and
He
,
Z.
,
2020
, “
Achieving Predictive and Proactive Maintenance for High-Speed Railway Power Equipment With LSTM-RNN
,”
IEEE Trans. Ind. Inf.
,
16
(
10
), pp.
6509
6517
.10.1109/TII.2020.2966033
11.
Liu
,
Q.
,
Liang
,
T.
, and
Dinavahi
,
V.
,
2020
, “
Real-Time Hierarchical Neural Network Based Fault Detection and Isolation for High-Speed Railway System Under Hybrid AC/DC Grid
,”
IEEE Trans. Power Delivery
,
35
(
6
), pp. 2853–2864.10.1109/TPWRD.2020.3022750
12.
Lopes Gerum
,
P. C.
,
Altay
,
A.
, and
Baykal-Gürsoy
,
M.
,
2019
, “
Data-Driven Predictive Maintenance Scheduling Policies for Railways
,”
Transp. Res. Part C
,
107
, pp.
137
154
.10.1016/j.trc.2019.07.020
13.
Sresakoolchai
,
J.
, and
Kaewunruen
,
S.
,
2023
, “
Railway Infrastructure Maintenance Efficiency Improvement Using Deep Reinforcement Learning Integrated With Digital Twin Based on Track Geometry and Component Defects
,”
Sci. Rep.
,
13
, p.
2439
.10.1038/s41598-023-29526-8
14.
De Simone
,
L.
,
Caputo
,
E.
,
Cinque
,
M.
,
Galli
,
A.
,
Moscato
,
V.
,
Russo
,
S.
,
Cesaro
,
G.
, et al.,
2023
, “
LSTM-Based Failure Prediction for Railway Rolling Stock Equipment
,”
Expert Syst. Appl.
,
222
, p.
119767
.10.1016/j.eswa.2023.119767
15.
Garrido Martínez-Llop
,
P.
,
de Dios Sanz Bobi
,
J.
, and
Olmedo Ortega
,
M.
,
2023
, “
Time Consideration in Machine Learning Models for Train Comfort Prediction Using LSTM Networks
,”
Eng. Appl. Artif. Intell.
,
123
, p.
106303
.10.1016/j.engappai.2023.106303
16.
Jun
,
S. L.
,
Ho
,
H. S.
,
Yoon
,
C. I.
, and
Kyum
,
K. I.
,
2018
, “
Prediction of Track Deterioration Using Maintenance Data and Machine Learning Schemes
,”
J. Transportation Eng., Part A: Syst.
,
144
(9), pp.
1
9
.10.1061/JTEPBS.0000173
17.
Goodarzi
,
S.
,
Kashani
,
H. F.
,
Saeedi
,
A.
,
Oke
,
J.
, and
Ho
,
C. L.
,
2023
, “
Stochastic Analysis for Estimating Track Geometry Degradation Rates Based on GPR and LiDAR Data
,”
Constr. Build. Mater.
,
369
, p.
130591
.10.1016/j.conbuildmat.2023.130591
18.
Binder
,
M.
,
Mezhuyev
,
V.
, and
Tschandl
,
M.
,
2023
, “
Predictive Maintenance for Railway Domain: A Systematic Literature Review
,”
IEEE Eng. Manage. Rev.
,
51
(
2
), pp.
120
140
.10.1109/EMR.2023.3262282
19.
Zarembski
,
A. M.
,
Palese
,
J. W.
, and
Nguyen
,
M.
,
2022
, “
Forecasting Track Geometry Degradation Using GPR Based Ballast Condition
,”
ASME
Paper No. JRC2022-79586.10.1115/JRC2022-79586
20.
Yurlov
,
D.
,
Zarembski
,
A. M.
,
Attoh-Okine
,
N.
,
Palese
,
J. W.
, and
Thompson
,
H.
,
2019
, “
Probabilistic Approach for Development of Track Geometry Defects as a Function of Ground Penetrating Radar Measurements
,”
Transp. Infrastruct. Geotechnol.
,
6
(
1
), pp.
1
20
.10.1007/s40515-018-0066-x
21.
Schuld
,
M.
,
Sinayskiy
,
I.
, and
Petruccione
,
F.
,
2015
, “
An Introduction to Quantum Machine Learning
,”
Contemp. Phys.
,
56
(
2
), pp.
172
185
.10.1080/00107514.2014.964942
22.
Ciliberto
,
C.
,
Herbster
,
M.
,
Ialongo
,
A. D.
,
Pontil
,
M.
,
Rocchetto
,
A.
,
Severini
,
S.
, and
Wossnig
,
L.
,
2018
, “
Quantum Machine Learning: A Classical Perspective
,”
Proc. Royal Soc. A
, 474(2209), p.
20170551
.10.1098/rspa.2017.0551
23.
Zhang
,
Y.
, and
Ni
,
Q.
,
2020
, “
Recent Advances in Quantum Machine Learning
,”
Quantum Eng.
,
2
(
1
), p.
e34
.
24.
Melnikov
,
A.
,
A
,
A.
,
Kordzanganeh
,
M.
, and
Lee
,
R.-K.
,
2023
, “
Quantum Machine Learning: From Physics to Software Engineering
,”
Adv. Phys.: X
,
8
(
1
), p.
2165452
.
25.
Bodini
,
M.
,
Rivolta
,
M. W.
, and
Sassi
,
R.
,
2021
, “
Opening the Black Box: Interpretability of Machine Learning Algorithms in Electrocardiography
,”
Philos. Trans. R. Soc. A
,
379
(
2212
), p.
20200253
.10.1098/rsta.2020.0253
26.
Hassija
,
V.
,
Chamola
,
V.
,
Mahapatra
,
A.
,
Singal
,
A.
,
Goel
,
D.
,
Huang
,
K.
,
Scardapane
,
S.
,
Spinelli
,
I.
,
Mahmud
,
M.
, and
Hussain
,
A.
,
2024
, “
Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
,”
Cognit. Comput.
,
16
(
1
), pp.
45
74
.10.1007/s12559-023-10179-8
27.
García
,
M. V.
, and
Aznarte
,
J. L.
,
2020
, “
Shapley Additive Explanations for NO2 Forecasting
,”
Ecological Inf.
,
56
, p.
101039
.10.1016/j.ecoinf.2019.101039
28.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Proceedings of the 31st International Conference on Neural In Formation Processing Systems
, Long Beach, CA, Dec. 4–9, pp.
4768
4777
.https://dl.acm.org/doi/pdf/10.5555/3295222.3295230
29.
Martey
,
E. N.
,
Ahmed
,
L.
, and
Attoh-Okine
,
N.
,
2017
, “
Track Geometry Big Data Analysis: A Machine Learning Approach
,”
IEEE International Conference on Big Data
, Boston, MA, Dec. 11–14, pp.
3800
3809
.10.1109/BigData.2017.8258381
30.
FRA
,
2017
, “
Track and Rail and Infrastructure Integrity Compliance Manual
,” Office of Railroad Safety, U.S. Department of Transportation, Washington, DC, accessed Jan. 1, 2025, https://railroads.dot.gov/sites/fra.dot.gov/files/2020-07/2017-01_Track_Rail_Infrastructure.pdf
31.
Peinado Gonzalo
,
A.
,
Horridge
,
R.
,
Steele
,
H.
,
Stewart
,
E.
, and
Entezami
,
M.
,
2022
, “
Review of Data Analytics for Condition Monitoring of Railway Track Geometry
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
12
), pp.
22737
22754
.10.1109/TITS.2022.3214121
32.
Sharma
,
S.
,
Cui
,
Y.
,
He
,
Q.
,
Mohammadi
,
R.
, and
Li
,
Z.
,
2018
, “
Data-Driven op- Timization of Railway Maintenance for Track Geometry
,”
Transp. Res. Part C
,
90
, pp.
34
58
.10.1016/j.trc.2018.02.019
33.
Peng
,
L.
,
Zheng
,
S.
,
Li
,
P.
,
Wang
,
Y.
, and
Zhong
,
Q.
,
2021
, “
A Comprehensive Detection System for Track Geometry Using Fused Vision and Inertia
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
15
.10.1109/TIM.2020.3039301
34.
Majstorović
,
I.
,
Ahac
,
M.
,
Madejski
,
J.
, and
Lakušić
,
S.
,
2022
, “
Influence of the Analytical Segment Length on the Tram Track Quality Assessment
,”
Appl. Sci.
,
12
(
19
), p.
10036
.10.3390/app121910036
35.
Weston
,
P.
,
Roberts
,
C.
,
Yeo
,
G.
, and
Stewart
,
E.
,
2015
, “
Perspectives on Railway Track Geometry Condition Monitoring From in-Service Railway Vehicles
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
1063
1091
.10.1080/00423114.2015.1034730
36.
Balogun
,
I.
, and
Attoh-Okine
,
N.
,
2021
, “
Random Forest–Based Covariate Shift in Addressing Nonstationarity of Railway Track Data
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
7
(
3
), p.
04021028
.10.1061/AJRUA6.0001141
37.
Su
,
Z.
,
Núñez
,
A.
,
Baldi
,
S.
, and
Schutter
,
B. D.
,
2016
, “
Model Predictive Control for Rail Condition-Based Maintenance: A Multilevel Approach
,” 19th International Conference on Intelligent Transportation Systems (
ITSC
), Rio de Janeiro, Brazil, Nov. 1–4, pp.
354
359
.10.1109/ITSC.2016.7795579
38.
Moaveni
,
M.
,
Qian
,
Y.
,
Boler
,
H.
,
Mishra
,
D.
, and
Tutumluer
,
E.
,
2014
, “
Investigation of Ballast Degradation and Fouling Trends Using Image Analysis
,”
Proceedings of the Second International Conference on Railway Technology
,
Civil-Comp Press
, Corsica, France, Apr. 8–11, pp. 1–15.
39.
Indraratna
,
B.
,
Su
,
L. J.
, and
Rujikiatkamjorn
,
C.
,
2011
, “
A New Parameter for Classification and Evaluation of Railway Ballast Fouling
,”
Can. Geotech. J.
,
48
(
2
), pp.
322
326
.10.1139/T10-066
40.
Sussmann
,
T. R.
,
Ruel
,
M.
, and
Chrismer
,
S. M.
,
2012
, “
Source of Ballast Fouling and Influence Considerations for Condition Assessment Criteria
,”
Transp. Res. Rec.
,
2289
(
1
), pp.
87
94
.10.3141/2289-12
41.
ENSCO,
2024
, “
Ground Penetrating Radar (GPR) - Rail Anomalies Detection | Fouled Ballast | ENSCO Track Inspection
,” ENSCO, Vienna, VA, accessed July 22, 2024, https://www.ensco.com/rail/ground-penetrating-radar-gpr
42.
Rimoldi
,
P.
,
Pezzano
,
P.
, and
Trovato
,
F.
,
2022
, “
Design Method for Geogrid Stabilisation of Railway Ballast and Subballast
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1260
(
1
), p.
012026
.10.1088/1757-899X/1260/1/012026
43.
Schuld
,
M.
,
Bocharov
,
A.
,
Svore
,
K. M.
, and
Wiebe
,
N.
,
2020
, “
Circuit-Centric Quantum Classifiers
,”
Phys. Rev. A
,
101
(
3
), p.
032308
.10.1103/PhysRevA.101.032308
44.
LaRose
,
R.
, and
Coyle
,
B.
,
2020
, “
Robust Data Encodings for Quantum Classifiers
,”
Phys. Rev. A
,
102
(
3
), p.
032420
.10.1103/PhysRevA.102.032420
45.
Lamb
,
J.
,
Mixon
,
G.
,
Andrei
,
P.
,
Zhao
,
S.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Mcclean
,
J. R.
, et al.,
2016
, “
The Theory of Variational Hybrid Quantum-Classical Algorithms
,”
New J. Phys.
,
18
(
2
), p.
023023
.10.1088/1367-2630/18/2/023023
46.
Farhi
,
E.
,
Goldstone
,
J.
, and
Gutmann
,
S.
,
2014
, “
A Quantum Approximate Optimization Algorithm
,” preprint
arXiv:1411.4028
.10.48550/arXiv.1411.4028
47.
Bravyi
,
S.
,
Gosset
,
D.
,
König
,
R.
, and
Tomamichel
,
M.
,
2020
, “
Quantum Advantage With Noisy Shallow Circuits in 3D
,”
Nat. Phys.
,
16
(
10
), pp.
1040
1045
.10.1038/s41567-020-0948-z
48.
Ristè
,
D.
,
da Silva
,
M. P.
,
Ryan
,
C. A.
,
Cross
,
A. W.
,
Smolin
,
J. A.
,
Gambetta
,
J. M.
,
Chow
,
J. M.
, et al.,
2017
, “
Demonstration of Quantum Advantage in Machine Learning
,”
Quantum Inf.
,
3
, p.
16
.10.1038/s41534-017-0017-3
49.
Huang
,
H.-L.
,
Du
,
Y.
,
Gong
,
M.
,
Zhao
,
Y.
,
Wu
,
Y.
,
Wang
,
C.
,
Li
,
S.
, et al
.
,
2021
, “
Experimental Quantum Generative Adversarial Networks for Image Generation
,”
Phys. Rev. Appl.
,
16
, p.
024051
.10.1103/PhysRevApplied.16.024051
50.
Schatzki
,
L.
,
Arrasmith
,
A.
,
Coles
,
P. J.
, and
Cerezo
,
M.
,
2021
, “
Entangled Datasets Quantum Mach. Learn.
,” preprint
arXiv:2109.03400
10.48550/arXiv.2109.03400
51.
Ortiz Marrero
,
C.
,
Kieferová
,
M.
, and
Wiebe
,
N.
,
2021
, “
Entanglement-Induced Barren Plateaus
,”
PRX Quantum
,
2
(
4
), p.
040316
.10.1103/PRXQuantum.2.040316
52.
Lindsay
,
J.
, and
Zand
,
R.
,
2023
, “
A Novel Stochastic LSTM Model In- Spired by Quantum Machine Learning
,” 24th International Symposium on Quality Electronic Design (
ISQED
), San Francisco, CA, Apr. 5–7, pp.
1
8
.10.1109/ISQED57927.2023.10129344
53.
Meyer
,
J. J.
,
Mularski
,
M.
,
Gil-Fuster
,
E.
,
Mele
,
A. A.
,
Arzani
,
F.
,
Wilms
,
A.
, and
Eisert
,
J.
,
2023
, “
Exploiting Symmetry in Variational Quantum Machine Learning
,”
PRX Quantum
,
4
(
1
), p.
010328
.10.1103/PRXQuantum.4.010328
54.
Farhi
,
E.
, and
Neven
,
H.
,
2018
, “
Classification With Quantum Neural Networks on Near Term Processors
,” preprint
arXiv:1802.06002
.10.48550/arXiv.1802.06002
55.
Landman
,
J.
,
Mathur
,
N.
,
Li
,
Y. Y.
,
Strahm
,
M.
,
Kazdaghli
,
S.
,
Prakash
,
A.
, and
Kerenidis
,
I.
,
2022
, “
Quantum Methods for Neural Networks and Application to Medical Image Classification
,”
Quantum
,
6
, p.
881
.10.22331/q-2022-12-22-881
56.
Abbas
,
A.
,
Sutter
,
D.
,
Zoufal
,
C.
,
Lucchi
,
A.
,
Figalli
,
A.
, and
Woerner
,
S.
,
2021
, “
The Power of Quantum Neural Networks
,”
Nat. Comput. Sci.
,
1
(
6
), pp.
403
409
.10.1038/s43588-021-00084-1
57.
Potempa
,
R.
, and
Porebski
,
S.
,
2022
, “
Comparing Concepts of Quantum and Classical Neural Network Models for Image Classification Task
,”
Progress in Image Processing, Pattern Recognition and Communication Systems
,
M.
Choraś
,
R. S.
Choraś
,
M.
Kurzyński
,
P.
Trajdos
,
J.
Pejaś
, and
T.
Hyla
, eds.,
Springer International Publishing
,
Cham
, pp.
61
71
. .
58.
Sengar
,
A.
,
Vijayaraghavan
,
A.
, and
Hwang
,
J.
,
2023
, “
A Comparative Analysis of Hybrid Quantum Neural Networks in Binary Credit Defaulting Tasks
,” IEEE MIT Undergraduate Research Technology Conference (
URTC
), Cambridge, MA, Oct. 6–8, pp.
1
5
.10.1109/URTC60662.2023.10535032
59.
Kashif
,
M.
, and
Al-Kuwari
,
S.
,
2022
, “
Demonstrating Quantum Advantage in Hybrid Quantum Neural Networks for Model Capacity
,” IEEE International Conference on Rebooting Computing (
ICRC
), San Francisco, CA, Dec. 8–9, pp.
36
44
.10.1109/ICRC57508.2022.00011
60.
Zhou
,
M.-G.
,
Liu
,
Z.-P.
,
Yin
,
H.-L.
,
Li
,
C.-L.
,
Xu
,
T.-K.
, and
Chen
,
Z.-B.
,
2023
, “
Quantum Neural Network for Quantum Neural Computing
,”
Research
,
6
, p.
0134
.10.34133/research.0134
61.
Qian
,
Y.
,
Wang
,
X.
,
Du
,
Y.
,
Wu
,
X.
, and
Tao
,
D.
,
2024
, “
The Dilemma of Quantum Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
35
(
4
), pp.
5603
5615
.10.1109/TNNLS.2022.3208313
62.
Patti
,
T. L.
,
Najafi
,
K.
,
Gao
,
X.
, and
Yelin
,
S. F.
,
2021
, “
Entanglement Devised Barren Plateau Mitigation
,”
Phys. Rev. Res.
,
3
, p.
033090
.10.1103/PhysRevResearch.3.033090
63.
Hubregtsen
,
T.
,
Pichlmeier
,
J.
,
Stecher
,
P.
, and
Bertels
,
K.
,
2021
, “
Evaluation of Parameterized Quantum Circuits: On the Relation Between Classification Accuracy, Expressibility, and Entangling Capability
,”
Quantum Mach. Intell.
,
3
(
1
), pp. 1–19.10.1007/s42484-021-00038-w
64.
Havlicek
,
V.
,
Córcoles
,
A. D.
,
Temme
,
K.
,
Harrow
,
A. W.
,
Kandala
,
A.
,
Chow
,
J. M.
, and
Gambetta
,
J. M.
,
2019
, “
Supervised Learning With Quantum Enhanced Feature Spaces
,”
Nature
,
567
(
7747
), pp.
209
212
.10.1038/s41586-019-0980-2
65.
Schuld
,
M.
, and
Killoran
,
N.
,
2019
, “
Quantum Machine Learning in Feature Hilbert Spaces
,”
Phys. Rev. Lett.
,
122
(
4
), p.
040504
.10.1103/PhysRevLett.122.040504
66.
Zhang
,
X.-M.
,
Li
,
T.
, and
Yuan
,
X.
,
2022
, “
Quantum State Preparation With Optimal Circuit Depth: Implementations and Applications
,”
Phys. Rev. Lett.
,
129
(
23
), p.
230504
.10.1103/PhysRevLett.129.230504
67.
Schuld
,
M.
,
Sweke
,
R.
, and
Meyer
,
J. J.
,
2021
, “
Effect of Data Encoding on the Expressive Power of Variational Quantum-Machine-Learning Models
,”
Phys. Rev. A
,
103
(
3
), p.
032430
.10.1103/PhysRevA.103.032430
68.
Schuld
,
M.
, and
Petruccione
,
F.
,
2018
,
Supervised Learning With Quantum Computers
,
Springer
,
Cham
.
69.
Javadi-Abhari
,
A.
,
Treinish
,
M.
,
Krsulich
,
K.
,
Wood
,
C. J.
,
Lishman
,
J.
,
Gacon
,
J.
,
Martiel
,
S.
, et al
.
,
2024
, “
Quantum Computing With Qiskit
,” preprint
arXiv:2405.08810
.10.48550/arXiv.2405.08810
70.
Chen
,
I.-C.
,
Singh
,
H.
,
Anukruti
,
V. L.
,
Quanz
,
B.
, and
Yogaraj
,
K.
,
2023
, “
A Survey of Classical and Quantum Sequence Models
,” 16th International Conference on Communication Systems & Networks (
COMSNETS
), Bengaluru, India, Jan. 3–7, pp.
1006
1011
.10.1109/COMSNETS59351.2024.10426944
71.
Phalak
,
K.
, and
Ghosh
,
S.
,
2023
, “
Shot Optimization in Quantum Machine Learning Architectures to Accelerate Training
,”
IEEE Access
,
11
, pp.
41514
41523
.10.1109/ACCESS.2023.3270419
72.
Powell
,
M. J. D.
,
1994
, “
A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation
,” Advances in Optimization and Numerical Analysis, Springer, Dordrecht, The Netherlands, pp.
51
67
.
73.
Feng
,
D.-C.
,
Wang
,
W.-J.
,
Mangalathu
,
S.
, and
Taciroglu
,
E.
,
2021
, “
Interpretable XGBoost-SHAP Machine-Learning Model for Shear Strength Pre- Diction of Squat RC Walls
,”
J. Struct. Eng.
,
147
(
11
), p.
04021173
.10.1061/(ASCE)ST.1943-541X.0003115
74.
Molnar
,
C.
,
2024
, Interpretable Machine Learning, 2nd ed., Github, San Francisco, CA, accessed Jan. 3, 2025, christophm.github.io/interpretable-ml-book/
75.
Lundberg
,
S.
,
2018
, “
Welcome to the SHAP Documentation—SHAP Latest Documentation
,” Shap, Penrith, UK, accessed Aug. 8, 2024, https://shap.readthedocs.io/en/latest/index.html
76.
Offenbacher
,
S.
,
Neuhold
,
J.
,
Veit
,
P.
, and
Landgraf
,
M.
,
2020
, “
Analyzing Major Track Quality Indices and Introducing a Universally Applicable TQI
,”
Appl. Sci.
,
10
(
23
), p.
8490
.10.3390/app10238490
77.
FRA,
2020
, “
Relationship Between Track Geometry Defects and Measured Track Subsurface Condition
,” U.S. Department of Transportation, Federal Rail-road Administration, Washington, DC.
78.
Heese
,
R.
,
Gerlach
,
T.
,
Mücke
,
S.
,
Müller
,
S.
,
Jakobs
,
M.
, and
Piatkowski
,
N.
,
2023
, “Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning,” preprint
arXiv:2301.09138
.10.48550/arXiv.2301.09138
79.
Power
,
L.
, and
Guha
,
K.
,
2024
, “
Feature Importance and Explainability in Quantum Machine Learning
,” preprint
arXiv:2405.08917
.10.48550/arXiv.2405.08917
80.
Marrero
,
C. O.
,
Wiebe
,
N.
,
Furches
,
J.
, and
Ragone
,
M.
,
2023
, “
Quantum Neural Networks: Issues, Training, and Applications
,”
Pacific Northwest National Laboratory, Richland, WA
.
81.
Cerezo
,
M.
,
Verdon
,
G.
,
Huang
,
H.
,
Cincio
,
L.
, and
Coles
,
P.
,
2022
, “
Challenges and Opportunities in Quantum Machine Learning
,”
Nat. Comput. Sci.
,
2
(
9
), pp.
567
576
.10.1038/s43588-022-00311-3
82.
de Leon
,
N. P.
,
Itoh
,
K. M.
,
Kim
,
D.
,
Mehta
,
K. K.
,
Northup
,
T. E.
,
Paik
,
H.
,
Palmer
,
B. S.
, et al
.
,
2021
, “
Materials Challenges and Opportunities for Quantum Computing Hardware
,”
Science
,
372
(
6539
), p.
eabb2823
.10.1126/science.abb2823
83.
Kurita
,
T.
,
Qassim
,
H.
,
Ishii
,
M.
,
Oshima
,
H.
,
Sato
,
S.
, and
Emerson
,
J.
,
2023
, “
Synergetic Quantum Error Mitigation by Randomized Compiling and Zero-Noise Extrapolation for the Variational Quantum Eigensolver
,”
Quantum
,
7
, p.
1184
.10.22331/q-2023-11-20-1184
84.
Cai
,
Z.
,
Babbush
,
R.
,
Benjamin
,
S. C.
,
Endo
,
S.
,
Huggins
,
W. J.
,
Li
,
Y.
,
McClean
,
J. R.
, and
O’Brien
,
T. E.
,
2023
, “
Quantum Error Mitigation
,”
Rev. Mod. Phys.
,
95
, p. 045005.10.1103/RevModPhys.95.045005
85.
Rietsche
,
R.
,
Dremel
,
C.
,
Bosch
,
S.
,
Steinacker
,
L.
,
Meckel
,
M.
, and
Leimeister
,
J.-M.
,
2022
, “
Quantum Computing
,”
Electron Markets
,
32
(
4
), pp.
2525
2536
.10.1007/s12525-022-00570-y
86.
Seifert
,
L. M.
,
Beyer
,
K.
,
Luoma
,
K.
, and
Strunz
,
W. T.
,
2022
, “
Quantum Steering on IBM Quantum Processors
,”
Phys. Rev. A
,
105
(
4
), p. 042413.10.1103/PhysRevA.105.042413
87.
AbuGhanem
,
M.
, and
Eleuch
,
H.
,
2024
, “
Full Quantum Tomography Study of Google’s Sycamore Gate on IBM’s Quantum Computers
,”
EPJ Quantum Technol.
,
11
(
1
), pp. 1–25.10.1140/epjqt/s40507-024-00248-8
You do not currently have access to this content.