Abstract

System reliability analysis aims to identify a system’s weaknesses or critical components and quantify their failures’ impact. Analyzing the influence of system components on system failure is a common problem in reliability engineering, known as the importance analysis of a system. Reliability analysis uses two main models: the binary-state system and the multistate system (MSS). To evaluate the reliability of MSS with binary-state components, computing methods of survival signature are studied. The structural functions of MSS and the survival signature allow for various mathematical approaches, including logical differential calculus (LDC). LDC can be employed to identify situations where a change in the number of functioning components leads to a change in the system's state, known as the structural importance measure. This paper presents a technique for calculating structural importance measures of MSS with binary-state components. The technique uses the survival signature of MSS instead of the structure function. It is based on logical differential calculus, specifically direct partial logical derivatives (DPLD). Numerical and application examples are provided to demonstrate and validate the technique, exhibiting its superiority and potential for real engineering use.

References

1.
Kuo
,
W.
, and
Zuo
,
M. J.
,
2003
,
Optimal Reliability Modeling: Principles and Applications
,
Wiley
, New York.
2.
Lisnianski
,
A.
, and
Levitin
,
G.
,
2003
,
Multi-State System Reliability: Assessment, Optimization and Applications
,
World Scientific
, Hackensack, NJ.
3.
Rausand
,
M.
, and
Hoyland
,
A.
,
2003
,
System Reliability Theory: Models, Statistical Methods, and Applications
,
Wiley
, New York.
4.
Mutar
,
E. K.
,
2023
, “
Estimating the Reliability of Complex Systems Using Various Bounds Methods
,”
Int. J. Syst. Assurance Eng. Manage.
,
14
(
6
), pp.
2546
2558
.10.1007/s13198-023-02108-7
5.
Birnbaum
,
Z. W.
,
1968
,
On the Importance of Different Components in a Multicomponent System
,
Washington University Seattle Lab of Statistical Research
, Seattle, WA.
6.
Armstrong
,
M. J.
,
1997
, “
Reliability-Importance and Dual Failure-Mode Components
,”
IEEE Trans. Reliab.
,
46
(
2
), pp.
212
221
.10.1109/24.589949
7.
Kuo
,
W.
, and
Zhu
,
X.
,
2012
, “
Some Recent Advances on Importance Measures in Reliability
,”
IEEE Trans. Reliab.
,
61
(
2
), pp.
344
360
.10.1109/TR.2012.2194196
8.
Amrutkar
,
K. P.
, and
Kamalja
,
K. K.
,
2017
, “
An Overview of Various Importance Measures of Reliability System
,”
Int. J. Math. Eng. Manage. Sci.
,
2
(
3
), pp.
150
171
.10.33889/IJMEMS.2017.2.3-014
9.
Rusnak
,
P.
,
Zaitseva
,
E.
,
Coolen
,
F. P.
,
Kvassay
,
M.
, and
Levashenko
,
V.
,
2023
, “
Logic Differential Calculus for Reliability Analysis Based on Survival Signature
,”
IEEE Trans. Dependable Secure Comput.
,
20
(
2
), pp.
1529
1540
.10.1109/TDSC.2022.3159126
10.
Yang
,
L.
,
Zhang
,
X.
,
Lu
,
Z.
,
Fu
,
Y.
,
Moens
,
D.
, and
Beer
,
M.
,
2024
, “
Reliability Evaluation of a Multi-State System With Dependent Components and Imprecise Parameters: A Structural Reliability Treatment
,”
Reliab. Eng. Syst. Saf.
,
250
, p.
110240
.10.1016/j.ress.2024.110240
11.
Levitin
,
G.
,
2001
, “
Incorporating Common-Cause Failures Into Nonrepairable Multistate Series-Parallel System Analysis
,”
IEEE Trans. Reliab.
,
50
(
4
), pp.
380
388
.10.1109/24.983398
12.
Qin
,
J.
, and
Li
,
Z.
,
2019
, “
Reliability and Sensitivity Analysis Method for a Multistate System With Common Cause Failure
,”
Complexity
,
2019
(
1
), p.
6535726
.10.1155/2019/6535726
13.
Qin
,
J.-L.
,
Li
,
Z.
,
Niu
,
Y.-G.
, and
Meng
,
G.-Q.
,
2018
, “
Simulated Method for Reliability Evaluation of Multi-State Coherent System
,”
Iran. J. Sci. Technol. Trans. A Sci.
,
42
(
3
), pp.
1363
1371
.10.1007/s40995-017-0225-x
14.
Qin
,
J.
,
Niu
,
Y.
, and
Li
,
Z.
,
2016
, “
A Combined Method for Reliability Analysis of Multi-State System of Minor-Repairable Components,” Eksploatacja
,”
I. Niezawodnosc Maint. Reliab.
,
18
(
1
), pp.
80
88
.10.17531/ein.2016.1.11
15.
Eryilmaz
,
S.
, and
Tuncel
,
A.
,
2016
, “
Generalizing the Survival Signature to Unrepairable Homogeneous Multi‐State Systems
,”
Nav. Res. Logist.
,
63
(
8
), pp.
593
599
.10.1002/nav.21722
16.
Liu
,
Y.
,
Shi
,
Y.
,
Bai
,
X.
, and
Liu
,
B.
,
2018
, “
Stress–Strength Reliability Analysis of Multi-State System Based on Generalized Survival Signature
,”
J. Comput. Appl. Math.
,
342
, pp.
274
291
.10.1016/j.cam.2018.03.041
17.
Qin
,
J.
, and
Coolen
,
F. P.
,
2022
, “
Survival Signature for Reliability Evaluation of a Multi-State System With Multi-State Components
,”
Reliab. Eng. Syst. Saf.
,
218
, p.
108129
.10.1016/j.ress.2021.108129
18.
Zaitseva
,
E.
, and
Levashenko
,
V.
,
2017
, “
Reliability Analysis of Multi-State System With Application of Multiple-Valued Logic
,”
Int. J. Qual. Reliab. Manage.
,
34
(
6
), pp.
862
878
.10.1108/IJQRM-06-2016-0081
19.
Putcha
,
C.
,
Dutta
,
S.
, and
Gupta
,
S. K.
,
2021
,
Reliability and Risk Analysis in Engineering and Medicine
,
Springer
, Cham, Switzerland.
20.
Shao
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
Xie
,
C.
,
2023
, “
Structure Function Learning of Hierarchical Multi-State Systems With a Change-Point: An Embedded Expectation-Maximization Algorithm
,”
Reliab. Eng. Syst. Saf.
,
240
, p.
109574
.10.1016/j.ress.2023.109574
21.
Zaitseva
,
E.
,
Levashenko
,
V.
, and
Rabcan
,
J.
,
2023
, “
A New Method for Analysis of Multi-State Systems Based on Multi-Valued Decision Diagram Under Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108868
.10.1016/j.ress.2022.108868
22.
Zaitseva
,
E. N.
, and
Levashenko
,
V. G.
,
2013
, “
Importance Analysis by Logical Differential Calculus
,”
Autom. Remote Control
,
74
(
2
), pp.
171
182
.10.1134/S000511791302001X
23.
Zaitseva
,
E.
, and
Levashenko
,
V.
,
2013
, “
Multiple-Valued Logic Mathematical Approaches for Multi-State System Reliability Analysis
,”
J. Appl. Logic
,
11
(
3
), pp.
350
362
.10.1016/j.jal.2013.05.005
24.
Rusnak
,
P.
,
Sedlacek
,
P.
, and
Czapp
,
S.
,
2023
, “
Reliability Analysis of Data Storage Using Survival Signature and Logic Differential Calculus
,”
Reliability Engineering and Computational Intelligence for Complex Systems: Design, Analysis and Evaluation
,
Springer
, Cham, Switzerland, pp.
21
35
.
25.
Rusnak
,
P.
,
Zaitseva
,
E.
,
Levashenko
,
V.
,
Bolvashenkov
,
I.
, and
Kammermann
,
J.
,
2024
, “
Importance Analysis of a System Based on Survival Signature by Structural Importance Measures
,”
Reliab. Eng. Syst. Saf.
,
243
, p.
109814
.10.1016/j.ress.2023.109814
26.
Coolen
,
F. P.
, and
Coolen-Maturi
,
T.
,
2012
, “
Generalizing the Signature to Systems With Multiple Types of Components
,”
Proceedings of Complex Systems and Dependability
, Wroclaw, Poland, June 25–29, pp.
115
130
.10.1007/978-3-642-30662-4_8
27.
Tavangar
,
M.
, and
Hashemi
,
M.
,
2022
, “
Reliability and Maintenance Analysis of Coherent Systems Subject to Aging and Environmental Shocks
,”
Reliab. Eng. Syst. Saf.
,
218
, p.
108170
.10.1016/j.ress.2021.108170
28.
Mutar
,
E. K.
,
2024
, “
Determining the Optimal Design for Complex Systems Using a Reliability Signature
,”
J. Intell. Fuzzy Syst.
,
46
(
1
), pp.
2999
3011
.10.3233/JIFS-234456
29.
Behrensdorf
,
J.
,
Regenhardt
,
T.-E.
,
Broggi
,
M.
, and
Beer
,
M.
,
2021
, “
Numerically Efficient Computation of the Survival Signature for the Reliability Analysis of Large Networks
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
107935
.10.1016/j.ress.2021.107935
30.
Di Maio
,
F.
,
Pettorossi
,
C.
, and
Zio
,
E.
,
2023
, “
Entropy-Driven Monte Carlo Simulation Method for Approximating the Survival Signature of Complex Infrastructures
,”
Reliab. Eng. Syst. Saf.
,
231
, p.
108982
.10.1016/j.ress.2022.108982
31.
Hashemi
,
M.
,
Asadi
,
M.
, and
Zarezadeh
,
S.
,
2020
, “
Optimal Maintenance Policies for Coherent Systems With Multi-Type Components
,”
Reliab. Eng. Syst. Saf.
,
195
, p.
106674
.10.1016/j.ress.2019.106674
32.
Zheng
,
J.
,
Okamura
,
H.
, and
Dohi
,
T.
,
2023
, “
Sensitivity Estimation of Markov Reward Models and Its Applications to Component Importance Analysis
,”
Advances in Reliability and Maintainability Methods and Engineering Applications: Essays in Honor of Professor Hong-Zhong Huang on His 60th Birthday
,
Springer
, Cham, Switzerland, pp.
103
132
.
33.
Mi
,
J.
,
Beer
,
M.
,
Li
,
Y.-F.
,
Broggi
,
M.
, and
Cheng
,
Y.
,
2020
, “
Reliability and Importance Analysis of Uncertain System With Common Cause Failures Based on Survival Signature
,”
Reliab. Eng. Syst. Saf.
,
201
, p.
106988
.10.1016/j.ress.2020.106988
34.
Gertsbakh
,
I.
, and
Shpungin
,
Y.
,
2011
, “
Multidimensional Spectra of Multistate Systems With Binary Components
,”
Recent Advances in System Reliability: Signatures, Multi-State Systems and Statistical Inference
,
Springer
, London, UK, pp.
49
61
.
35.
Da
,
G.
, and
Hu
,
T.
,
2013
, “
On Bivariate Signatures for Systems With Independent Modules
,”
Stochastic Orders in Reliability and Risk: In Honor of Professor Moshe Shaked
, Springer, New York, pp.
143
166
.10.1007/978-1-4614-6892-9_7
36.
Tapia
,
M.
,
Guima
,
T.
, and
Katbab
,
A.
,
1991
, “
Calculus for a Multivalued-Logic Algebraic System
,”
Appl. Math. Comput.
,
42
(
3
), pp.
255
285
.10.1016/0096-3003(91)90004-7
37.
Zaitseva
,
E.
, and
Levashenko
,
V.
,
2006
, “
Dynamic Reliability Indices for Parallel, Series and k-Out-of-n Multi-State Systems
,”
Proceedings of RAMS’06 Annual Reliability and Maintainability Symposium
, Newport Beach, CA, Jan. 23–26, pp.
253
259
.10.1109/RAMS.2006.1677383
38.
Chang
,
M.
,
Coolen
,
F. P.
,
Coolen-Maturi
,
T.
, and
Huang
,
X.
,
2024
, “
A Generalized System Reliability Model Based on Survival Signature and Multiple Competing Failure Processes
,”
J. Comput. Appl. Math.
,
435
, p.
115364
.10.1016/j.cam.2023.115364
You do not currently have access to this content.