Abstract

Complex structural systems deployed for aerospace, civil, or mechanical applications must operate reliably under varying operational conditions. Structural health monitoring (SHM) systems help ensure the reliability of these systems by providing continuous monitoring of the state of the structure. SHM relies on synthesizing measured data with a predictive model to make informed decisions about structural states. However, these models—which may be thought of as a form of a digital twin—need to be updated continuously as structural changes (e.g., due to damage) arise. We propose an uncertainty-aware machine learning model that enforces distance preservation of the original input state space and then encodes a distance-aware mechanism via a Gaussian process (GP) kernel. The proposed approach leverages the spectral-normalized neural GP algorithm to combine the flexibility of neural networks with the advantages of GP, subjected to structure-preserving constraints, to produce an uncertainty-aware model. This model is used to detect domain shift due to structural changes that cannot be observed directly because they may be spatially isolated (e.g., inside a joint or localized damage). This work leverages detection theory to detect domain shift systematically given statistical features of the prediction variance produced by the model. The proposed approach is demonstrated on a nonlinear structure being subjected to damage conditions. It is shown that the proposed approach is able to rely on distances of the transformed input state space to predict increased variance in shifted domains while being robust to normative changes.

References

1.
Chinesta
,
F.
,
Cueto
,
E.
,
Abisset-Chavanne
,
E.
,
Duval
,
J. L.
, and
Khaldi
,
F. E.
,
2020
, “
Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data
,”
Arch. Comput. Methods Eng.
,
27
(
1
), pp.
105
134
.10.1007/s11831-018-9301-4
2.
Gardner
,
P.
,
Borgo
,
M. D.
,
Ruffini
,
V.
,
Hughes
,
A. J.
,
Zhu
,
Y.
, and
Wagg
,
D. J.
,
2020
, “
Towards the Development of an Operational Digital Twin
,”
Vibration
,
3
(
3
), pp.
235
265
.10.3390/vibration3030018
3.
Wagg
,
D. J.
,
Worden
,
K.
,
Barthorpe
,
R. J.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
3
), p.
030901
.10.1115/1.4046739
4.
Thelen
,
A.
,
Zhang
,
X.
,
Fink
,
O.
,
Lu
,
Y.
,
Ghosh
,
S.
,
Youn
,
B. D.
,
Todd
,
M. D.
,
Mahadevan
,
S.
,
Hu
,
C.
, and
Hu
,
Z.
,
2022
, “
A Comprehensive Review of Digital Twin—Part 1: Modeling and Twinning Enabling Technologies
,”
Struct. Multidiscip. Optim.
,
65
(
12
), p.
354
.10.1007/s00158-022-03425-4
5.
Wright
,
L.
, and
Davidson
,
S.
,
2020
, “
How to Tell the Difference Between a Model and a Digital Twin
,”
Adv. Model. Simul. Eng. Sci.
,
7
(
1
), p.
13
.10.1186/s40323-020-00147-4
6.
McClellan
,
A.
,
Lorenzetti
,
J.
,
Pavone
,
M.
, and
Farhat
,
C.
,
2022
, “
A Physics-Based Digital Twin for Model Predictive Control of Autonomous Unmanned Aerial Vehicle Landing
,”
Philos. Trans. R. Soc., A
,
380
(
2229
), p.
8
.10.1098/rsta.2021.0204
7.
Tsialiamanis
,
G.
,
Wagg
,
D. J.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2021
, “
On Generative Models as the Basis for Digital Twins
,”
Data-Centric Eng.
,
2
, p.
e11
.10.1017/dce.2021.13
8.
Bonney
,
M. S.
, and
Wagg
,
D.
,
2022
, “
Historical Perspective of the Development of Digital Twins
,”
Special Topics in Structural Dynamics and Experimental Techniques
,
Springer
, Cham, Switzerland, pp.
15
20
.
9.
Ferrari
,
A.
, and
Willcox
,
K.
,
2024
, “
Digital twins in mechanical and aerospace engineering
,”
Nat. Comput. Sci.
,
4
, pp.
178
183
.10.1038/s43588-024-00613-8
10.
Thelen
,
A.
,
Zhang
,
X.
,
Fink
,
O.
,
Lu
,
Y.
,
Ghosh
,
S.
,
Youn
,
B. D.
,
Todd
,
M. D.
,
Mahadevan
,
S.
,
Hu
,
C.
, and
Hu
,
Z.
,
2023
, “
A Comprehensive Review of Digital Twin—Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives
,”
Struct. Multidiscip. Optim.
,
66
(
1
), p.
354
.10.1007/s00158-022-03410-x
11.
Friswell
,
M. I.
,
Penny
,
J. E. T.
, and
Garvey
,
S. D.
,
1995
, “
Using Linear Model Reduction to Investigate the Dynamics of Structures With Local Non-Linearities
,”
Mech. Syst. Signal Process.
,
9
(
3
), pp.
317
328
.10.1006/mssp.1995.0026
12.
Quinn
,
D. D.
, and
Brink
,
A. R.
,
2021
, “
Global System Reduction Order Modeling for Localized Feature Inclusion
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041006
.10.1115/1.4048890
13.
Simpson
,
T.
,
Vlachas
,
K.
,
Garland
,
A.
,
Dervilis
,
N.
, and
Chatzi
,
E.
,
2024
, “
VpROM: A Novel Variational Autoencoder-Boosted Reduced Order Model for the Treatment of Parametric Dependencies in Nonlinear Systems
,”
Sci. Rep.
,
14
(
1
), p.
6091
.10.1038/s41598-024-56118-x
14.
Wu
,
R.-T.
, and
Jahanshahi
,
M. R.
,
2019
, “
Deep Convolutional Neural Network for Structural Dynamic Response Estimation and System Identification
,”
J. Eng. Mech.
,
145
(
1
), p.
04018125
.10.1061/(ASCE)EM.1943-7889.0001556
15.
Stoffel
,
M.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
Deep Convolutional Neural Networks in Structural Dynamics Under Consideration of Viscoplastic Material Behaviour
,”
Mech. Res. Commun.
,
108
, p.
103565
.10.1016/j.mechrescom.2020.103565
16.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
NSFnets (Navier–Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
.10.1016/j.jcp.2020.109951
17.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
18.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems With Noisy Data
,”
J. Comput. Phys.
,
425
, p.
109913
.10.1016/j.jcp.2020.109913
19.
Zheng
,
Q.
,
Zeng
,
L.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Semantic Inpainting: Application to Geostatistical Modeling
,”
J. Comput. Phys.
,
419
, p.
109676
.10.1016/j.jcp.2020.109676
20.
Kharazmi
,
E.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113547
.10.1016/j.cma.2020.113547
21.
Zhang
,
E.
,
Dao
,
M.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2022
, “
Analyses of Internal Structures and Defects in Materials Using Physics-Informed Neural Networks
,”
Sci. Adv.
,
8
(
7
), p.
eabk0644
.10.1126/sciadv.abk0644
22.
Rudy
,
S. H.
,
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2017
, “
Data-Driven Discovery of Partial Differential Equations
,”
Sci. Adv.
,
3
(
4
), p.
e1602614
.10.1126/sciadv.1602614
23.
Kaheman
,
K.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2020
, “
SINDy-PI: A Robust Algorithm for Parallel Implicit Sparse Identification of Nonlinear Dynamics
,”
Proc. R. Soc. A
,
476
(
2242
), p.
20200279
.10.1098/rspa.2020.0279
24.
Hesthaven
,
J. S.
, and
Ubbiali
,
S.
,
2018
, “
Non-Intrusive Reduced Order Modeling of Nonlinear Problems Using Neural Networks
,”
J. Comput. Phys.
,
363
, pp.
55
78
.10.1016/j.jcp.2018.02.037
25.
Chu
,
H. K.
, and
Hayashibe
,
M.
,
2020
, “
Discovering Interpretable Dynamics by Sparsity Promotion on Energy and the Lagrangian
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2154
2160
.10.1109/LRA.2020.2970626
26.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.10.1126/science.1165893
27.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
104
(
24
), pp.
9943
9948
.10.1073/pnas.0609476104
28.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Discovering Conservation Laws From Data for Control
,” 2018 IEEE Conference on Decision and Control (
CDC
), Miami, FL, Dec. 17–19, pp.
6415
6421
.10.1109/CDC.2018.8618963
29.
Jin
,
P.
,
Zhang
,
Z.
,
Zhu
,
A.
,
Tang
,
Y.
, and
Karniadakis
,
G. E.
,
2020
, “
SympNets: Intrinsic Structure-Preserving Symplectic Networks for Identifying Hamiltonian Systems
,”
Neural Networks
,
132
, pp.
166
179
.10.1016/j.neunet.2020.08.017
30.
Qian
,
E.
,
Kramer
,
B.
,
Peherstorfer
,
B.
, and
Willcox
,
K.
,
2020
, “
Lift and Learn: Physics-Informed Machine Learning for Large-Scale Nonlinear Dynamical Systems
,”
Phys. D: Nonlinear Phenom.
,
406
, p.
132401
.10.1016/j.physd.2020.132401
31.
Lee
,
K.
,
Trask
,
N.
, and
Stinis
,
P.
,
2021
, “
Machine Learning Structure Preserving Brackets for Forecasting Irreversible Processes
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
5696
5707
.10.5555/3540261.3540696
32.
Hennigh
,
O.
,
Narasimhan
,
S.
,
Nabian
,
M. A.
,
Subramaniam
,
A.
,
Tangsali
,
K.
,
Fang
,
Z.
,
Rietmann
,
M.
,
Byeon
,
W.
, and
Choudhry
,
S.
,
2021
, “
NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework
,”
Proceedings of the International Conference on Computational Science
, Krakow, Poland, June 16–18, pp.
447
461
.10.1007/978-3-030-77977-1_36
33.
Sukumar
,
N.
, and
Srivastava
,
A.
,
2022
, “
Exact Imposition of Boundary Conditions With Distance Functions in Physics-Informed Deep Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
389
, p.
114333
.10.1016/j.cma.2021.114333
34.
Schein
,
A.
,
Carlberg
,
K. T.
, and
Zahr
,
M. J.
,
2021
, “
Preserving General Physical Properties in Model Reduction of Dynamical Systems Via Constrained-Optimization Projection
,”
Int. J. Numer. Methods Eng.
,
122
(
14
), pp.
3368
3399
.10.1002/nme.6667
35.
Greydanus
,
S.
,
Dzamba
,
M.
, and
Yosinski
,
J.
,
2019
, “
Hamiltonian Neural Networks
,”
Advances in Neural Information Processing Systems
, Vancouver, BC, Canada, Dec. 8–14, pp.
1
11
.https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
36.
Brink
,
A. R.
,
Najera-Flores
,
D. A.
, and
Martinez
,
C.
,
2021
, “
The Neural Network Collocation Method for Solving Partial Differential Equations
,”
Neural Comput. Appl.
,
33
(
11
), pp.
5591
5608
.10.1007/s00521-020-05340-5
37.
Mattheakis
,
M.
,
Sondak
,
D.
,
Dogra
,
A. S.
, and
Protopapas
,
P.
,
2022
, “
Hamiltonian Neural Networks for Solving Equations of Motion
,”
Phys. Rev. E
,
105
(
6
), p.
065305
.10.1103/PhysRevE.105.065305
38.
Najera-Flores
,
D. A.
,
Quinn
,
D. D.
,
Garland
,
A.
,
Vlachas
,
K.
,
Chatzi
,
E.
, and
Todd
,
M. D.
,
2024
, “
A Structure-Preserving Machine Learning Framework for Accurate Prediction of Structural Dynamics for Systems With Isolated Nonlinearities
,”
Mech. Syst. Signal Process.
,
213
, p.
111340
.10.1016/j.ymssp.2024.111340
39.
Najera-Flores
,
D.
,
Jacobs
,
J.
,
Quinn
,
D. D.
,
Garland
,
A.
, and
Todd
,
M.
,
2024
, “
Uncertainty Quantification of a Machine Learning Model for Identification of Isolated Nonlinearities With Conformal Prediction
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
9
(
2
), p.
021005
.10.1115/1.4064777
40.
Quionero-Candela
,
J.
,
Sugiyama
,
M.
,
Schwaighofer
,
A.
, and
Lawrence
,
N. D.
,
2009
,
Dataset Shift in Machine Learning
,
The MIT Press
, Cambridge, MA.
41.
Amodei
,
D.
,
Olah
,
C.
,
Steinhardt
,
J.
,
Christiano
,
P.
,
Schulman
,
J.
, and
Mané
,
D.
,
2016
, “
Concrete Problems in AI Safety
,” e-print
arXiv:1606.06565
.10.48550/arXiv.1606.06565
42.
Sun
,
B.
,
Feng
,
J.
, and
Saenko
,
K.
,
2016
, “
Return of Frustratingly Easy Domain Adaptation
,” Proceedings of the 30th AAAI Conference on Artificial Intelligence (
AAAI'16
), Phoenix, AZ, Feb. 12–17, pp.
2058
2065
.10.5555/3016100.3016186
43.
Stacke
,
K.
,
Eilertsen
,
G.
,
Unger
,
J.
, and
Lundstrom
,
C.
,
2021
, “
Measuring Domain Shift for Deep Learning in Histopathology
,”
IEEE J. Biomed. Health Inf.
,
25
(
2
), pp.
325
336
.10.1109/JBHI.2020.3032060
44.
Li
,
X.
,
Zhang
,
W.
, and
Ding
,
Q.
,
2019
, “
Cross-Domain Fault Diagnosis of Rolling Element Bearings Using Deep Generative Neural Networks
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5525
5534
.10.1109/TIE.2018.2868023
45.
Hoffman
,
J.
,
Tzeng
,
E.
,
Park
,
T.
,
Zhu
,
J.-Y.
,
Isola
,
P.
,
Saenko
,
K.
,
Efros
,
A.
, and
Darrell
,
T.
,
2018
, “
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
,”
Proceedings of the 35th International Conference on Machine Learning
, Stockholm, Sweden, July 10–15, pp.
1989
1998
.https://proceedings.mlr.press/v80/hoffman18a/hoffman18a.pdf
46.
Sener
,
O.
,
Song
,
H. O.
,
Saxena
,
A.
, and
Savarese
,
S.
,
2016
, “
Learning Transferrable Representations for Unsupervised Domain Adaptation
,”
Advances in Neural Information Processing Systems
, Vol.
29
,
D.
Lee
,
M.
Sugiyama
,
U.
Luxburg
,
I.
Guyon
, and
R.
Garnett
, eds.,
Curran Associates
, Red Hook, NY.
47.
Martinez
,
C.
,
Potter
,
K. M.
,
Smith
,
M. D.
,
Donahue
,
E. A.
,
Collins
,
L.
,
Korbin
,
J. P.
, and
Roberts
,
S. A.
,
2019
, “
Segmentation Certainty Through Uncertainty: Uncertainty-Refined Binary Volumetric Segmentation Under Multifactor Domain Shift
,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (
CVPRW
), Long Beach, CA, June 16–17, pp.
484
486
.10.1109/CVPRW.2019.00066
48.
Martinez
,
C.
,
Najera-Flores
,
D. A.
,
Brink
,
A. R.
,
Quinn
,
D. D.
,
Chatzi
,
E.
, and
Forrest
,
S.
,
2021
, “
Confronting Domain Shift in Trained Neural Networks
,”
NeurIPS 2020 Workshop on Pre-Registration in Machine Learning
, Virtual, Dec. 11, pp.
176
192
.https://proceedings.mlr.press/v148/martinez21a/martinez21a.pdf
49.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
Proceedings of the 33rd International Conference on Machine Learning
, New York, June 19–24, pp.
1050
1059
.https://proceedings.mlr.press/v48/gal16.pdf
50.
Loftus
,
T. J.
,
Shickel
,
B.
,
Ruppert
,
M. M.
,
Balch
,
J. A.
,
Ozrazgat-Baslanti
,
T.
,
Tighe
,
P. J.
,
Efron
,
P. A.
,
Hogan
,
W. R.
,
Rashidi
,
P.
,
Upchurch
,
G. R.
, Jr.
, and
Bihorac
,
A.
,
2022
, “
Uncertainty-Aware Deep Learning in Healthcare: A Scoping Review
,”
PLOS Digital Health
,
1
(
8
), p.
e0000085
.10.1371/journal.pdig.0000085
51.
Martín Vicario
,
C.
,
Rodríguez Salas
,
D.
,
Maier
,
A.
,
Hock
,
S.
,
Kuramatsu
,
J.
,
Kallmuenzer
,
B.
,
Thamm
,
F.
,
Taubmann
,
O.
,
Ditt
,
H.
,
Schwab
,
S.
,
Dörfler
,
A.
, and
Muehlen
,
I.
,
2024
, “
Uncertainty-Aware Deep Learning for Trustworthy Prediction of Long-Term Outcome After Endovascular Thrombectomy
,”
Sci. Rep.
,
14
(
1
), p.
5544
.10.1038/s41598-024-55761-8
52.
Dawood
,
T.
,
Chen
,
C.
,
Sidhu
,
B. S.
,
Ruijsink
,
B.
,
Gould
,
J.
,
Porter
,
B.
,
Elliott
,
M. K.
,
Mehta
,
V.
,
Rinaldi
,
C. A.
,
Puyol-Antón
,
E.
,
Razavi
,
R.
, and
King
,
A. P.
,
2023
, “
Uncertainty Aware Training to Improve Deep Learning Model Calibration for Classification of Cardiac MR Images
,”
Med. Image Anal.
,
88
, p.
102861
.10.1016/j.media.2023.102861
53.
Liu
,
J. Z.
,
Lin
,
Z.
,
Padhy
,
S.
,
Tran
,
D.
,
Bedrax-Weiss
,
T.
, and
Lakshminarayanan
,
B.
,
2020
, “
Simple and Principled Uncertainty Estimation With Deterministic Deep Learning Via Distance Awareness
,” 34th Conference on Neural Information Processing Systems (
NeurIPS
), Vancouver, BC, Canada, Dec. 6–12, pp.
7498
7512
.https://papers.nips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf
54.
Nemani
,
V.
,
Biggio
,
L.
,
Huan
,
X.
,
Hu
,
Z.
,
Fink
,
O.
,
Tran
,
A.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Hu
,
C.
,
2023
, “
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
,”
Mech. Syst. Signal Process.
,
205
, p.
110796
.10.1016/j.ymssp.2023.110796
55.
Vlachas
,
K.
,
Garland
,
A.
,
Quinn
,
D.
, and
Chatzi
,
E.
,
2024
, “
Parametric Reduced-Order Modeling for Component-Oriented Treatment and Localized Nonlinear Feature Inclusion
,”
Nonlinear Dyn.
,
112
(
5
), pp.
3399
3420
.10.1007/s11071-023-09213-z
56.
Najera-Flores
,
D. A.
, and
Todd
,
M. D.
,
2023
, “
A Structure-Preserving Neural Differential Operator With Embedded Hamiltonian Constraints for Modeling Structural Dynamics
,”
Comput. Mech.
,
72
(
2
), pp.
241
252
.10.1007/s00466-023-02288-w
57.
Sharma
,
H.
,
Najera-Flores
,
D. A.
,
Todd
,
M. D.
, and
Kramer
,
B.
,
2024
, “
Lagrangian Operator Inference Enhanced With Structure-Preserving Machine Learning for Nonintrusive Model Reduction of Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
423
, p.
116865
.10.1016/j.cma.2024.116865
58.
Rahimi
,
A.
, and
Recht
,
B.
,
2008
, “
Random Features for Large-Scale Kernel Machines
,”
Adv. Neural Inf. Process. Syst.
,
20
, pp.
1177
1184
.https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
59.
Bradbury
,
J.
,
Frostig
,
R.
,
Hawkins
,
P.
,
Johnson
,
M. J.
,
Leary
,
C.
,
Maclaurin
,
D.
,
Necula
,
G.
,
Paszke
,
A.
,
VanderPlas
,
J.
,
Wanderman-Milne
,
S.
, and
Zhang
,
Q.
,
2018
, “
JAX: Composable Transformations of Python+NumPy Programs
,” GitHub, San Francisco, CA, accessed July 30, 2024, https://github.com/google/jax
60.
Heek
,
J.
,
Levskaya
,
A.
,
Oliver
,
A.
,
Ritter
,
M.
,
Rondepierre
,
B.
,
Steiner
,
A.
, and
van Zee
,
M.
,
2023
, “
Flax: A Neural Network Library and Ecosystem for JAX
,” GitHub, San Francisco, CA, accessed July 30, 2024, http://github.com/google/flax
61.
Mukhopadhyay
,
N.
,
2000
,
Probability and Statistical Inference
,
CRC Press
, Boston, MA.
62.
Welch
,
B.
,
1947
, “
The Generalization of Student's Problem When Several Different Population Variances Are Involved
,”
Biometrika
,
34
(
1/2
), pp.
28
35
.10.2307/2332510
63.
Hirschfeld
,
L.
,
Swanson
,
K.
,
Yang
,
K.
,
Barzilay
,
R.
, and
Coley
,
C. W.
,
2020
, “
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
,”
J. Chem. Inf. Model.
,
60
(
8
), pp.
3770
3780
.10.1021/acs.jcim.0c00502
64.
Zeng
,
J.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2023
, “
Probabilistic Damage Detection Using a New Likelihood-Free Bayesian Inference Method
,”
J. Civ. Struct. Health Monit.
,
13
(
2–3
), pp.
319
341
.10.1007/s13349-022-00638-5
65.
Borg
,
I.
, and
Groenen
,
P. J. F.
,
2005
,
Modern Multidimensional Scaling (Springer Series in Statistics)
, 2nd ed.,
Springer
,
New York
.
You do not currently have access to this content.