Abstract

As critical components in industrial application scenarios, high-precision and high-confidence health assessment of rolling bearings attract more and more attention. Currently, predictive maintenance obtains outstanding achievements under the same object and working conditions. However, evaluation performances under variable working conditions and different specifications still need to be improved. This study zeroes in on the cross-domain prognostics of rotating machinery under oil and grease lubrication conditions. It proposes an unsupervised domain adaptation (DA) transform reconstruction GRU (UDATrGRU) prognostics framework, which captures the common degradation characteristics under different lubrication conditions through the designed second-order statistical quantity, facilitating the following high-precision predictions. To be specific, the vibration degradation features are first extracted through signal preprocessing and then input into UDATrGRU. The developed domain adaptation layer calculates high-dimensional projections between diverse data sets, and then corresponding degradation features are statistically aligned under the pressure of the designed quantity. Subsequently, time-series modeling and Bootstrap-based uncertainty estimations are carried out. Finally, lifecycle accelerated tests of the rolling bearing from PRONOSITA and ABLT-1A cross-validate the feasibility and effectiveness of the proposed machinery prognostics framework. The results are pretty promising: compared to existing methods, our UDATrGRU framework has achieved an improvement of at least 5.65% in R2 and a reduction of at least 21.5% in root mean squared error.

References

1.
Chen
,
Z.
,
Xia
,
J.
,
Li
,
J.
,
Chen
,
J.
,
Huang
,
R.
,
Jin
,
G.
, and
Li
,
W.
,
2023
, “
Generalized Open-Set Domain Adaptation in Mechanical Fault Diagnosis Using Multiple Metric Weighting Learning Network
,”
Adv. Eng. Inf.
,
57
, p.
102033
.10.1016/j.aei.2023.102033
2.
Li
,
Y.
,
Zhao
,
H.
,
Fan
,
W.
, and
Shen
,
C.
,
2021
, “
Generalized Autocorrelation Method for Fault Detection Under Varying-Speed Working Conditions
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
11
.10.1109/TIM.2021.3104018
3.
Kordestani
,
M.
,
Saif
,
M.
,
Orchard
,
M. E.
,
Razavi-Far
,
R.
, and
Khorasani
,
K.
,
2021
, “
Failure Prognosis and Applications—A Survey of Recent Literature
,”
IEEE Trans. Reliab.
,
70
(
2
), pp.
728
748
.10.1109/TR.2019.2930195
4.
Cubillo
,
A.
,
Perinpanayagam
,
S.
, and
Esperon-Miguez
,
M.
,
2016
, “
A Review of Physics-Based Models in Prognostics: Application to Gears and Bearings of Rotating Machinery
,”
Adv. Mech. Eng.
,
8
(
8
), p.
168781401666466
.10.1177/1687814016664660
5.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation – A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.10.1016/j.ejor.2010.11.018
6.
Khan
,
S.
, and
Yairi
,
T.
,
2018
, “
A Review on the Application of Deep Learning in System Health Management
,”
Mech. Syst. Signal Process.
,
107
, pp.
241
265
.10.1016/j.ymssp.2017.11.024
7.
Liu
,
R. N.
,
Yang
,
B. Y.
,
Zio
,
E.
, and
Chen
,
X. F.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
.10.1016/j.ymssp.2018.02.016
8.
She
,
D.
, and
Jia
,
M.
,
2021
, “
A BiGRU Method for Remaining Useful Life Prediction of Machinery
,”
Measurement
,
167
, p.
108277
.10.1016/j.measurement.2020.108277
9.
Wang
,
B.
,
Lei
,
Y.
,
Yan
,
T.
,
Li
,
N.
, and
Guo
,
L.
,
2020
, “
Recurrent Convolutional Neural Network: A New Framework for Remaining Useful Life Prediction of Machinery
,”
Neurocomputing
,
379
, pp.
117
129
.10.1016/j.neucom.2019.10.064
10.
Ding
,
P.
,
Wang
,
H.
, and
Dai
,
Y.
,
2019
, “
A Clustering-Based Framework for Performance Degradation Prediction of Slewing Bearing Using Multiple Physical Signals
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
2
), p.
020908
.10.1115/1.4042843
11.
Deutsch
,
J.
, and
He
,
D.
,
2018
, “
Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
48
(
1
), pp.
11
20
.10.1109/TSMC.2017.2697842
12.
Wang
,
S.
,
Chen
,
J.
,
Wang
,
H.
, and
Zhang
,
D.
,
2019
, “
Degradation Evaluation of Slewing Bearing Using HMM and Improved GRU
,”
Measurement
,
146
, pp.
385
395
.10.1016/j.measurement.2019.06.038
13.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
.10.1016/j.neucom.2017.02.045
14.
Fink
,
O.
,
Wang
,
Q.
,
Svensén
,
M.
,
Dersin
,
P.
,
Lee
,
W.-J.
, and
Ducoffe
,
M.
,
2020
, “
Potential, Challenges and Future Directions for Deep Learning in Prognostics and Health Management Applications
,”
Eng. Appl. Artif. Intell.
,
92
, p.
103678
.10.1016/j.engappai.2020.103678
15.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.10.1109/TKDE.2009.191
16.
Long
,
M.
,
Wang
,
J.
,
Ding
,
G.
,
Pan
,
S. J.
, and
Yu
,
P. S.
,
2014
, “
Adaptation Regularization: A General Framework for Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
26
(
5
), pp.
1076
1089
.10.1109/TKDE.2013.111
17.
Chen
,
C.
,
Li
,
Z.
,
Yang
,
J.
, and
Liang
,
B.
,
2017
, “
A Cross Domain Feature Extraction Method Based on Transfer Component Analysis for Rolling Bearing Fault Diagnosis
,” 2017 29th Chinese Control And Decision Conference (
CCDC
), Chongqing, China, May 28–30, pp.
5622
5626
.10.1109/CCDC.2017.7978168
18.
Pan
,
S. J.
,
Tsang
,
I. W.
,
Kwok
,
J. T.
, and
Yang
,
Q.
,
2011
, “
Domain Adaptation Via Transfer Component Analysis
,”
IEEE Trans. Neural Networks
,
22
(
2
), pp.
199
210
.10.1109/TNN.2010.2091281
19.
Wen
,
L.
,
Gao
,
L.
, and
Li
,
X.
,
2019
, “
A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
49
(
1
), pp.
136
144
.10.1109/TSMC.2017.2754287
20.
Lunga
,
D.
,
Prasad
,
S.
,
Crawford
,
M. M.
, and
Ersoy
,
O.
,
2014
, “
Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning
,”
IEEE Signal Process. Mag.
,
31
(
1
), pp.
55
66
.10.1109/MSP.2013.2279894
21.
Kegl
,
B.
,
2002
, “
Intrinsic Dimension Estimation Using Packing Numbers
,”
Proceedings of 16th Annual Neural Information Processing Systems Conference
, Vancouver, BC, Canada, Dec. 9–14, pp.
681
688
.https://proceedings.neurips.cc/paper_files/paper/2002/file/1177967c7957072da3dc1db4ceb30e7a-Paper.pdf
22.
Kong
,
W. C.
,
Dong
,
Z. Y.
,
Jia
,
Y. W.
,
Hill
,
D. J.
,
Xu
,
Y.
, and
Zhang
,
Y.
,
2019
, “
Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
,”
IEEE Trans. Smart Grid
,
10
(
1
), pp.
841
851
.10.1109/TSG.2017.2753802
23.
Cherian
,
A.
,
Sra
,
S.
,
Banerjee
,
A.
, and
Papanikolopoulos
,
N.
,
2013
, “
Jensen-Bregman LogDet Divergence With Application to Efficient Similarity Search for Covariance Matrices
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
9
), pp.
2161
2174
.10.1109/TPAMI.2012.259
24.
Herath
,
S.
,
Harandi
,
M.
, and
Porikli
,
F.
, “
Learning an Invariant Hilbert Space for Domain Adaptation
,”
30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, Honolulu, HI, July 21–26, pp.
3956
3965
.
25.
Li
,
K.
,
Wang
,
R.
,
Lei
,
H.
,
Zhang
,
T.
,
Liu
,
Y.
, and
Zheng
,
X.
,
2018
, “
Interval Prediction of Solar Power Using an Improved Bootstrap Method
,”
Sol. Energy
,
159
, pp.
97
112
.10.1016/j.solener.2017.10.051
26.
Nectoux
,
P.
,
Gouriveau
,
R.
,
Medjaher
,
K.
,
Ramasso
,
E.
,
Chebel-Morello
,
B.
,
Zerhouni
,
N.
, and
Varnier
,
C.
,
2012
, “
PRONOSTIA: An Experimental Platform for Bearings Accelerated Degradation Tests
,”
Proceedings of IEEE International Conference on Prognostics and Health Management
,
Denver, CO
, June 18–21, pp.
1
8
.https://www.researchgate.net/publication/258028751_PRONOSTIA_An_experimental_platform_for_bearings_accelerated_degradation_tests
27.
Ganin
,
Y.
,
Ustinova
,
E.
,
Ajakan
,
H.
,
Germain
,
P.
,
Larochelle
,
H.
,
Laviolette
,
F.
,
March
,
M.
, and
Lempitsky
,
V.
,
2017
, “
Domain-Adversarial Training of Neural Networks
,” Csurka, G., eds Domain Adaptation in Computer Vision Applications. Advances in Computer Vision and Pattern Recognition. Springer, Berlin, pp.
189
209
.10.1007/978-3-319-58347-1_10
You do not currently have access to this content.