Abstract

The corrosive nature of seawater poses significant challenges to the design of gas cylinders in marine environments. Currently, TC4 titanium-alloy cylinders are predominantly used because of their resistance; however, they are costly and challenging to manufacture. To address this issue, this study proposes employing TC4 titanium alloy liner carbon fiber composite cylinders, which can reduce the manufacturing cost and processing difficulty while ensuring excellent protection against seawater corrosion and fatigue resistance. The fatigue life of the cylinders was predicted and analyzed using the finite element method, and a prototype was manufactured for verification. The results show that the composite layer can effectively share the stress load for the liner under the working pressure cycle, which increases the fatigue life of the titanium alloy liner carbon fiber composite cylinders and provides strong support for their application in marine engineering.

References

1.
Zhang
,
D.
,
Liu
,
Y.
,
Liu
,
R.
,
Guan
,
R.
,
Xing
,
S.
,
Dou
,
X.
,
He
,
Z.
, and
Zhang
,
X.
,
2022
, “
Characterization of Corrosion Behavior of TA2 Titanium Alloy Welded Joints in Seawater Environment
,”
Front. Chem.
,
10
, p.
950768
.10.3389/fchem.2022.950768
2.
Liu
,
H.
,
Teng
,
Y.
,
Guo
,
J.
,
Li
,
N.
,
Wang
,
J.
,
Zhou
,
Z.
, and
Li
,
S.
,
2021
, “
Corrosion Resistance and Corrosion Behavior of High‐Copper‐Bearing Steel in Marine Environments
,”
Mater. Corros.
,
72
(
5
), pp.
816
828
.10.1002/maco.202012111
3.
Lv
,
X.
,
Liu
,
S.
,
Xie
,
H.
,
Cao
,
Q.
,
Zhang
,
C.
,
Chen
,
F.
, and
Liu
,
B.
,
2022
, “
Corrosion Behavior of a Newly Developed High Strength Aluminum Alloy With High Magnesium Content Under Simulated Seawater Environment
,”
Mater. Corros.
,
73
(
8
), pp.
1318
1329
.10.1002/maco.202213065
4.
Šekularac
,
G.
,
Kovač
,
J.
, and
Milošev
,
I.
,
2020
, “
Comparison of the Electrochemical Behaviour and Self-Sealing of Zirconium Conversion Coatings Applied on Aluminium Alloys of Series 1xxx to 7xxx
,”
J. Electrochem. Soc.
,
167
(
11
), p.
111506
.10.1149/1945-7111/aba875
5.
Bukovec
,
M.
,
Xhanari
,
K.
, and
Finšgar
,
M.
,
2021
, “
Development and Analysis of Frits for Enamelling AA2024, AA6082 and AA7075 Aluminium Alloys
,”
Mater. Corros.
,
72
(
4
), pp.
660
671
.10.1002/maco.202011993
6.
Bajakke
,
P. A.
,
Malik
,
V. R.
,
Jambagi
,
S. C.
, and
Deshpande
,
A. S.
,
2020
, “
Corrosion Behavior of Novel AA1050/ZnO Surface Composite: A Potential Material for Ship Hull
,”
Mater. Lett.
,
281
, p.
128602
.10.1016/j.matlet.2020.128602
7.
Walsh
,
D.
,
Pope
,
D.
,
Danford
,
M.
, and
Huff
,
T.
,
1993
, “
The Effect of Microstructure on Microbiologically Influenced Corrosion
,”
JOM
,
45
(
9
), pp.
22
30
.10.1007/BF03222429
8.
Fu
,
T.
,
Zhan
,
Z.
,
Zhang
,
L.
,
Yang
,
Y.
,
Liu
,
Z.
,
Liu
,
J.
,
Li
,
L.
, and
Yu
,
X.
,
2015
, “
Effect of Surface Mechanical Attrition Treatment on Corrosion Resistance of Commercial Pure Titanium
,”
Sur. Coat. Technol.
,
280
, pp.
129
135
.10.1016/j.surfcoat.2015.08.041
9.
Erinosho
,
M. F.
,
Akinlabi
,
E. T.
, and
Pityana
,
S.
,
2015
, “
Microstructure and Corrosion Behaviour of Laser Metal Deposited Ti6Al4V/Cu Composites in 3.5% Sea Water
,”
Mater. Today. Proc.
,
2
(
4–5
), pp.
1166
1174
.10.1016/j.matpr.2015.07.028
10.
Cheng
,
J.
,
Li
,
F.
,
Zhu
,
S.
,
Yu
,
Y.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2017
, “
Electrochemical Corrosion and Tribological Evaluation of TiAl Alloy for Marine Application
,”
Tribol. Int.
,
115
, pp.
483
492
.10.1016/j.triboint.2017.06.027
11.
Mochizuki
,
H.
,
Yokota
,
M.
, and
Hattori
,
S.
,
2007
, “
Effects of Materials and Solution Temperatures on Cavitation Erosion of Pure Titanium and Titanium Alloy in Seawater
,”
Wear
,
262
(
5–6
), pp.
522
528
.10.1016/j.wear.2006.06.011
12.
Rondelli
,
G.
, and
Vicentini
,
B.
,
2000
, “
Evaluation by Electrochemical Tests of the Passive Film Stability of Equiatomic Ni‐Ti Alloy Also in Presence of Stress‐Induced Martensite
,”
J. Biomed. Mater. Res.
,
51
(
1
), pp.
47
54
.10.1002/(SICI)1097-4636(200007)51:1<47::AID-JBM7>3.0.CO;2-P
13.
Wu
,
S.
,
Ning
,
Y.
,
Xie
,
H.
,
Tian
,
H.
,
Lv
,
J.
, and
Liu
,
B.
,
2024
, “
Study on the Galvanic Corrosion Behavior of Copper-Nickel/Titanium Alloys Under Simulated Seawater Environment
,”
J. Solid State Electrochem.
,
28
(
7
), pp.
2315
2329
.10.1007/s10008-023-05769-3
14.
Kumar
,
G. R.
,
Rajyalakshmi
,
G.
, and
Swaroop
,
S.
,
2019
, “
A Critical Appraisal of Laser Peening and Its Impact on Hydrogen Embrittlement of Titanium Alloys
,”
Proc. Inst. Mech. Eng., Part B
,
233
(
13
), pp.
2371
2398
.10.1177/0954405419838956
15.
Jiang
,
Z.
,
Dai
,
X.
,
Norby
,
T.
, and
Middleton
,
H.
,
2011
, “
Investigation of Pitting Resistance of Titanium Based on a Modified Point Defect Model
,”
Corros. Sci.
,
53
(
2
), pp.
815
821
.10.1016/j.corsci.2010.11.015
16.
Fan
,
W.
,
Zhang
,
Y.
,
Tian
,
H.
,
Wang
,
W.
, and
Li
,
W.
,
2019
, “
Corrosion Behavior of Two Low Alloy Steel in Simulative Deep-Sea Environment Coupling to Titanium Alloy
,”
Colloid Interface Sci. Commun.
,
29
, pp.
40
46
.10.1016/j.colcom.2019.01.003
17.
Rajendran
,
N.
, and
Nishimura
,
T.
,
2007
, “
Crevice Corrosion Monitoring of Titanium and Its Alloys Using Microelectrodes
,”
Mater. Corros.
,
58
(
5
), pp.
334
339
.10.1002/maco.200604022
18.
Blackwood
,
D. J.
,
Greef
,
R.
, and
Peter
,
L. M.
,
1989
, “
An Ellipsometric Study of the Growth and Open-Circuit Dissolution of the Anodic Oxide Film on Titanium
,”
Electrochim. Acta
,
34
(
6
), pp.
875
880
.10.1016/0013-4686(89)87123-3
19.
Blackwood
,
D. J.
,
Peter
,
L. M.
, and
Williams
,
D. E.
,
1988
, “
Stability and Open Circuit Breakdown of the Passive Oxide Film on Titanium
,”
Electrochim. Acta
,
33
(
8
), pp.
1143
1149
.10.1016/0013-4686(88)80206-8
20.
Pang
,
J. J.
, and
Blackwood
,
D. J.
,
2015
, “
Corrosion of Titanium Alloys in High Temperature Seawater
,”
Corros. Sci. Technol.
,
14
(
4
), pp.
195
199
.10.14773/cst.2015.14.4.195
21.
Blackwood
,
D. J.
,
Peter
,
L. M.
,
Bishop
,
H. E.
,
Chalker
,
P. R.
, and
Williams
,
D. E.
,
1989
, “
A Sims Investigation of Hydrogen Penetration of Titanium Electrodes
,”
Electrochim. Acta
,
34
(
10
), pp.
1401
1403
.10.1016/0013-4686(89)87178-6
22.
Young
,
L. M.
,
Young
,
G. A.
,
Scully
,
J. R.
, and
Gangloff
,
R. P.
,
1995
, “
Aqueous Environmental Crack Propagation in High-Strength Beta Titanium Alloys
,”
Metall. Mater. Trans. A
,
26
(
5
), pp.
1257
1271
.10.1007/BF02670620
23.
Alvarez
,
A. M.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
2004
, “
Hydrogen Embrittlement of a Metastable β-Titanium Alloy
,”
Acta. Mater.
,
52
(
14
), pp.
4161
4175
.10.1016/j.actamat.2004.05.030
24.
Kolman
,
D. G.
, and
Scully
,
J. R.
,
2000
, “
An Assessment of the Crack Tip Potential of β-Titanium Alloys During Hydrogen Environmentally Assisted Crack Propagation Based on Crack Tip and Passive Surface Electrochemical Measurements
,”
Corros. Sci.
,
42
(
11
), pp.
1863
1879
.10.1016/S0010-938X(00)00033-0
25.
Pang
,
J. J.
, and
Blackwood
,
D. J.
,
2016
, “
Corrosion of Titanium Alloys in High Temperature Near Anaerobic Seawater
,”
Corros. Sci.
,
105
, pp.
17
24
.10.1016/j.corsci.2015.12.011
26.
Li
,
Y.
,
Wang
,
W.
,
Pan
,
M.
,
Cao
,
W.
,
Ma
,
X.
, and
Li
,
Y.
,
2023
, “
Fatigue Life Analysis of High-Pressure Seamless Steel Cylinder for Hydrogen Using Autofrettage Design
,”
Int. J. Pressure Vessel Piping
,
206
, p.
105065
.10.1016/j.ijpvp.2023.105065
27.
British Standards institute
,
2022
,
Specification for Unfired Fusion Welded Pressure Vessels
,
British Standards Institute
, London, UK.
You do not currently have access to this content.