Abstract

The fragments generated by explosions of storage tanks in chemical industrial parks may cause perforations or dents in adjacent tanks and trigger a domino effect. This paper determined reasonable fragment parameters based on the statistical laws of accidents and empirical formulas. The dynamic response process of large steel tanks impacted by fragments was simulated with ls-dyna. The typical impact process and results were analyzed in detail, and the damage laws of the tanks were discussed under various filling coefficients, volumes, fragment velocities, and impact angles. The results indicate that the inertial resistance of the inner liquid shortens the impact duration. Multiple collisions occur between the fragment and tank during impact, and the impact process involves three stages: initial collision, crushing and collision, and separation flight. The impact center displacement shows a fast and then slow reduction trend as the liquid level height increases, and the damage to the tank is negatively correlated with the liquid level height. The damage is lower when the tank volume is larger in an empty tank or at a high liquid level, while the damage instead increases when the volume exceeds 5000 m3 at a low liquid level. The peak impact force of the end-cap fragment is greatest when frontal impact occurs. Fragment flipping and curling occur at 45 deg and 90 deg impact, respectively. As the vertical impact angle increases from 0 deg to 90 deg, the fragment impact mode changes from initial frontal impact to flip detachment and finally to curling deformation.

References

1.
Sun
,
D. L.
,
Sun
,
J. H.
,
Li
,
Z. J.
,
Jiang
,
J. C.
,
Zhang
,
M. G.
, and
Wang
,
Z. R.
,
2019
, “
Investigation of the Influence of the Projected Proportion of a Burst Vessel on the Hazard Caused by Fragments
,”
J. Loss Prev. Process Ind.
,
62
, p.
103975
.10.1016/j.jlp.2019.103975
2.
Antonioni
,
G.
,
Spadoni
,
G.
, and
Cozzani
,
V.
,
2009
, “
Application of Domino Effect Quantitative Risk Assessment to an Extended Industrial Area
,”
J. Loss Prev. Process Ind.
,
22
(
5
), pp.
614
624
.10.1016/j.jlp.2009.02.012
3.
Zhang
,
X. M.
, and
Chen
,
G. H.
,
2009
, “
The Analysis of Domino Effect Impact Probability Triggered by Fragments
,”
Saf. Sci.
,
47
(
7
), pp.
1026
1032
.10.1016/j.ssci.2008.11.005
4.
Pietersen
,
C. M.
,
1988
, “
Analysis of the LPG-Disaster in Mexico City
,”
J. Hazard. Mater.
,
20
, pp.
85
107
.10.1016/0304-3894(88)87008-0
5.
Cozzani
,
V.
,
Gubinelli
,
G.
, and
Salzano
,
E.
,
2006
, “
Escalation Thresholds in the Assessment of Domino Accidental Events
,”
J. Hazard. Mater.
,
129
(
1–3
), pp.
1
21
.10.1016/j.jhazmat.2005.08.012
6.
Gubinelli
,
G.
, and
Cozzani
,
V.
,
2009
, “
Assessment of Missile Hazards: Identification of Reference Fragmentation Patterns
,”
J. Hazard. Mater.
,
163
(
2–3
), pp.
1008
1018
.10.1016/j.jhazmat.2008.07.056
7.
Holden
,
P. L.
,
1988
,
Assessment of Missile Hazards: Review of Incident Experience Relevant to Major Hazard Plant
,
Safety and Reliability Directorate, Health and Safety Directorate
,
Warrington, UK
.
8.
Hauptmanns
,
U.
,
2001
, “
A Procedure for Analyzing the Flight of Missiles From Explosions of Cylindrical Vessels
,”
J. Loss Prev. Process Ind.
,
14
(
5
), pp.
395
402
.10.1016/S0950-4230(01)00011-0
9.
Mébarki
,
A.
,
Mercier
,
F.
,
Nguyen
,
Q. B.
, and
Saada
,
R. A.
,
2009
, “
Structural Fragments and Explosions in Industrial Facilities. Part I: Probabilistic Description of the Source Terms
,”
J. Loss Prev. Process Ind.
,
22
(
4
), pp.
408
416
.10.1016/j.jlp.2009.02.006
10.
Chen
,
G. H.
,
Hu
,
K.
,
Zhou
,
C. L.
, and
Qi
,
S.
,
2018
, “
Experiments on Simulation of Impacts of Pointed Fragments on Small-Sized Tanks
,”
Explos. Shock Waves
,
38
(
6
), pp.
1295
1302
.
11.
Sun
,
D. L.
,
Jiang
,
J. C.
,
Zhang
,
M. G.
, and
Wang
,
Z. R.
,
2016
, “
Ballistic Experiments on the Mechanism of Protective Layer Against Domino Effect Caused by Projectiles
,”
J. Loss Prev. Process Ind.
,
40
, pp.
17
28
.10.1016/j.jlp.2015.11.020
12.
Hu
,
K.
,
Chen
,
G. H.
,
Zhou
,
C. L.
,
Reniers
,
G.
,
Qi
,
S.
, and
Zhou
,
Z. H.
,
2020
, “
Dynamic Response of a Large Vertical Tank Impacted by Blast Fragments From Chemical Equipment
,”
Saf. Sci.
,
130
, p.
104863
.10.1016/j.ssci.2020.104863
13.
Li
,
Y. H.
,
Jiang
,
J. C.
,
Bian
,
H. T.
,
Yu
,
Y.
,
Zhang
,
Q. W.
, and
Wang
,
Z. R.
,
2019
, “
Coupling Effects of the Fragment Impact and Adjacent Pool-Fire on the Thermal Buckling of a Fixed-Roof Tank
,”
Thin Wall Struct.
,
144
, p.
106309
.10.1016/j.tws.2019.106309
14.
Liu
,
S. Q.
,
Hu
,
Z. J.
,
Chen
,
W. J.
, and
Xiong
,
X.
,
2021
, “
Numerical Simulation of the Penetration Behavior of Explosive Fragments Impacting Vertical Dome Tank
,”
Pipeline Tech. Equip.
,
6
, pp.
35
37
.
15.
Feng
,
R.
,
Zhang
,
Z. X.
,
Duan
,
Q.
,
Mou
,
S. J.
,
Zhang
,
S. C.
,
Liu
,
Q. Z.
, and
Tao
,
B.
,
2018
, “
Protection Measures Against Impaction of the Atmospheric Vertical Oil and Gas Storage Tanks by the Explosion Fragments
,”
Pressure Vessel Technol.
,
35
(
4
), pp.
59
66
.10.3969/j.issn.1001-4837.2018.04.010
16.
Zhu
,
D.
,
Wang
,
Z.
,
Liang
,
M. Y.
, and
Zhao
,
Y.
,
2023
, “
Structural Response and Failure Mode of Steel Tanks Under Impact Loading
,”
J. Build. Struct.
,
44
(
1
), p.
0036
.10.14006/j.jzjgxb.2023.S1.0036
17.
Ministry of Housing and Urban-Rural Development of China
,
2014
, “
GB 50128-2014 Construction Code for Vertical Cylindrical Steel Welded Storage Tanks
,” China Planning Press, Beijing, China, accessed Oct. 16, 2024, https://www.doc88.com/p-26116484710964.html
18.
National Energy Administration of China
,
2009
, “
NB/T 47001-2009 Steel Liquefied Petroleum Gas Horizontal Storage Tank Type and Basic Parameters
,” SAC/TC 262, Beijing, China, accessed Oct. 16, 2024, https://www.doc88.com/p-8019117334352.html
19.
Nguyen
,
Q. B.
,
Mebarki
,
A.
,
Saada
,
R. A.
,
Mercier
,
F.
, and
Reimeringer
,
M.
,
2009
, “
Integrated Probabilistic Framework for Domino Effect and Risk Analysis
,”
Adv. Eng. Software
,
40
(
9
), pp.
892
901
.10.1016/j.advengsoft.2009.01.002
20.
Baum
,
M. R.
,
1988
, “
Disruptive Failure of Pressure Vessels: Preliminary Design Guidelines for Fragment Velocity and the Extent of the Hazard Zone
,”
ASME J. Pressure Vessel Technol.
,
110
(
2
), pp.
168
176
.10.1115/1.3265582
21.
Liu
,
P.
, and
Deng
,
X.
,
2003
, “
Experimental Investigation of Aerodynamic Characteristics on Slender Bodies at High Angles of Attack
,”
Can. Aeronaut. Space J.
,
49
(
1
), pp.
31
40
.10.5589/q03-002
22.
Pula
,
R.
,
Khan
,
F. I.
,
Veitch
,
B.
, and
Amyotte
,
P. R.
,
2007
, “
A Model for Estimating the Probability of Missile Impact: Missiles Originating From Bursting Horizontal Cylindrical Vessels
,”
Process Saf. Prog.
,
26
(
2
), pp.
129
139
.10.1002/prs.10178
23.
Livermore Software Technology Corporation
,
2018
,
LS-DYNA Keyword User's Manual
,
Livermore Software Technology Corporation (LSTC)
,
Livermore, CA
.
24.
Chen
,
G. H.
,
Zhao
,
Y. X.
,
Xue
,
Y. Z.
,
Huang
,
K. X.
, and
Zeng
,
T.
,
2021
, “
Numerical Investigation on Performance of Protective Layer Around Large-Scale Chemical Storage Tank Against Impact by Projectile
,”
J. Loss Prev. Process Ind.
,
69
, p.
104351
.10.1016/j.jlp.2020.104351
25.
Batalov
,
V. A.
,
Ivanov
,
A. G.
,
Ivanova
,
G. G.
,
Mineev
,
V. N.
,
Sofronov
,
V. N.
, and
Tsypkin
,
V. I.
,
1979
, “
Strength of Single-Layer and Multilayer Cylindrical Vessels Loaded Internally by Pulses of Various Lengths
,”
J. Appl. Mech. Tech. Phys.
,
19
(
5
), pp.
695
700
.10.1007/BF00850618
26.
Hu
,
K.
,
2016
, “
Numerical Simulation of Explosion Loading and Dynamic Response of Steel Tanks
,” M.S. thesis,
Zhejiang University
,
Hangzhou, China
(in Chinese).
27.
Steinberg
,
D. J.
,
1987
, “
Spherical Explosions and the Equation of State of Water
,”
Lawrence Livermore National Lab
,
Livermore, CA
, Report No. UCID-20974.
28.
Hu
,
C.
,
2018
, “
Research on Structural Response of Tank Under Blast Load
,” M.S. thesis,
China University of Petroleum
,
Beijing, China
(in Chinese).
29.
Xin
,
C. L.
,
Xue
,
Z. Q.
,
Tu
,
J.
, and
Wang
,
X. Q.
,
2020
,
Handbook of Material Parameters Commonly Used in Finite Element Analysis
,
Machinery Industry Press
,
Beijing, China
.
30.
Jones
,
N.
, and
Birch
,
R. S.
,
2010
, “
Low-Velocity Impact of Pressurised Pipelines
,”
Int. J. Impact Eng.
,
37
(
2
), pp.
207
219
.10.1016/j.ijimpeng.2009.05.006
You do not currently have access to this content.