Abstract

In this study, the interaction effects of closely spaced corrosion defects on the burst capacity of oil and gas pipelines under combined internal pressure and longitudinal compression are investigated by using parametric three-dimensional elasto-plastic finite element analyses. Full-scale burst tests reported in the literature are used to validate the finite element model. It is observed that the interaction effects of diagonally spaced defects on the burst capacity are strongly related to the overlapping portion of the defect width or circumferential spacing between the two defects. The analysis results indicate that the strongest interaction between diagonally spaced defects under combined loads occurs if the defects have zero circumferential separation. The interaction weakens as the defects are more and more overlapped or separated circumferentially. It is also observed that the interaction effect associated with longitudinally or circumferentially aligned, unequal-sized corrosion defects is negligible under the internal pressure only or combined loads.

References

1.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
Diniz
,
J. L.
, and
de Andrade
,
E. Q.
,
2005
, “
Burst Tests on Pipeline Containing Interacting Corrosion Defects
,”
ASME
Paper No. OMAE2005-67059
.10.1115/OMAE2005-67059
2.
Benjamin
,
A. C.
,
de Andrade
,
E. Q.
,
Jacob
,
B. P.
,
Pereira
,
L. C.
, and
Machado
,
P. R.
,
2006
, “
Failure Behavior of Colonies of Corrosion Defects Composed of Symmetrically Arranged Defects
,”
ASME
Paper No. IPC2006-10266
.10.1115/IPC2006-10266
3.
Sun
,
J.
, and
Cheng
,
Y. F.
,
2018
, “
Assessment by Finite Element Modeling of the Interaction of Multiple Corrosion Defects and the Effect on Failure Pressure of Corroded Pipelines
,”
Eng. Struct.
,
165
, pp.
278
286
.10.1016/j.engstruct.2018.03.040
4.
Li
,
X.
,
Bai
,
Y.
,
Su
,
C.
, and
Li
,
M.
,
2016
, “
Effect of Interaction Between Corrosion Defects on Failure Pressure of Thin Wall Steel Pipeline
,”
Int. J. Pressure Vessels Piping
,
138
, pp.
8
18
.10.1016/j.ijpvp.2016.01.002
5.
Xu
,
W. Z.
,
Li
,
C. B.
,
Choung
,
J.
, and
Lee
,
J. M.
,
2017
, “
Corroded Pipeline Failure Analysis Using Artificial Neural Network Scheme
,”
Adv. Eng. Softw.
,
112
, pp.
255
266
.10.1016/j.advengsoft.2017.05.006
6.
Silva
,
R. C. C.
,
Guerreiro
,
J. N. C.
, and
Loula
,
A. F. D.
,
2007
, “
A Study of Pipe Interacting Corrosion Defects Using the FEM and Neural Networks
,”
Adv. Eng. Softw.
,
38
(
11–12
), pp.
868
875
.10.1016/j.advengsoft.2006.08.047
7.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2016
, “
Burst Pressure Assessment for Pipelines With Multiple Corrosion Defects
,”
Fifth International Structural Specialty Conference
, London, ON, Canada, June 1–4, pp.
1
4
.https://www.semanticscholar.org/paper/STR-953%3A-BURST-PRESSURE-ASSESSMENTFOR-PIPELINES-Mondal-Dhar/327dfe72596c229e5e81195112c36d5c80e8ccc7
8.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2017
, “
Interaction of Multiple Corrosion Defects on Burst Pressure of Pipelines
,”
Can. J. Civ. Eng.
,
44
(
8
), pp.
589
597
.10.1139/cjce-2016-0602
9.
Sun
,
M.
,
Zhao
,
H.
,
Li
,
X.
,
Liu
,
J.
, and
Xu
,
Z.
,
2021
, “
A New Evaluation Method for Burst Pressure of Pipeline With Colonies of Circumferentially Aligned Defects
,”
Ocean Eng.
,
222
, p.
108628
.10.1016/j.oceaneng.2021.108628
10.
Zhang
,
S.
, and
Zhou
,
W.
,
2020
, “
Assessment of Effects of Idealized Defect Shape and Width on the Burst Capacity of Corroded Pipelines
,”
Thin-Walled Struct.
,
154
, p.
106806
.10.1016/j.tws.2020.106806
11.
Al-Owaisi
,
S.
,
Becker
,
A. A.
,
Sun
,
W.
,
Al-Shabibi
,
A.
,
Al-Maharbi
,
M.
,
Pervez
,
T.
, and
Al-Salmi
,
H.
,
2018
, “
An Experimental Investigation of the Effect of Defect Shape and Orientation on the Burst Pressure of Pressurised Pipes
,”
Eng. Failure Anal.
,
93
, pp.
200
213
.10.1016/j.engfailanal.2018.06.011
12.
Soliman
,
A. A.
,
Megahed
,
M. M.
,
Saleh
,
C. A.
, and
Shazly
,
M.
,
2021
, “
Assessment of Interacting Corrosion Defects in Thin-Walled Pipes
,”
ASME J. Pressure Vessel Technol.
,
143
(
3
), p. 031504.10.1115/1.4048635
13.
BSI
,
2019
,
Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
British Standards Institution
,
London, UK
, Standard No. BS 7910:2019.
14.
API
,
2016
,
Fitness-for-Service
, 3rd ed.,
American Petroleum Institute
,
Washington, DC
, Standard No. RP 579-1/ASME FFS-1.
15.
Yuan
,
F.
,
Li
,
L.
,
Guo
,
Z.
, and
Wang
,
L.
,
2015
, “
Landslide Impact on Submarine Pipelines: Analytical and Numerical Analysis
,”
J. Eng. Mech.
,
141
(
2
), p.
04014109
.10.1061/(ASCE)EM.1943-7889.0000826
16.
Zakeri
,
A.
,
Høeg
,
K.
, and
Nadim
,
F.
,
2008
, “
Submarine Debris Flow Impact on Pipelines—Part I: Experimental Investigation
,”
Coast. Eng.
,
55
(
12
), pp.
1209
1218
.10.1016/j.coastaleng.2008.06.003
17.
Chouchaoui
,
B.
,
1995
, “
Evaluating the Remaining Strength of Corroded Pipelines
,”
Ph.D. thesis
,
University of Waterloo
, Waterloo, ON, Canada.https://www.osti.gov/etdeweb/biblio/7193921
18.
Bjørnøy
,
O. H.
,
Sigurdsson
,
G.
, and
Cramer
,
E.
,
2000
, “
Residual Strength of Corroded Pipelines, DNV Test Results
,”
The Tenth International Offshore and Polar Engineering Conference
,
International Society of Offshore and Polar Engineers
, Seattle, WA, May 28–June 2, Paper No.
ISOPE-I-00-140
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE00/All-ISOPE00/ISOPE-I-00-140/6866
19.
Smith
,
M. Q.
, and
Waldhart
,
C. J.
,
2000
, “
Combined Loading Tests of Large Diameter Corroded Pipelines
,”
ASME
Paper No. IPC2000-191
.10.1115/IPC2000-191
20.
Liu
,
J.
,
Chauhan
,
V.
,
Ng
,
P.
,
Wheat
,
S.
, and
Hughes
,
C.
,
2009
, “
Remaining Strength of Corroded Pipe Under Secondary (Biaxial) Loading
,” GL Industrial Services UK Ltd, Loughborough, UK, Report No.
R9068
.https://rosap.ntl.bts.gov/view/dot/34464
21.
Taylor
,
N.
,
Clubb
,
G.
, and
Matheson
,
I.
,
2015
, “
The Effect of Bending and Axial Compression on Pipeline Burst Capacity
,”
SPE Offshore Europe Conference and Exhibition
, Aberdeen, Scotland, UK, Sept. 8–11,
Paper No.
SPE-175464-MS
.10.2118/175464-MS
22.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2019
, “
Burst Pressure of Corroded Pipelines Considering Combined Axial Forces and Bending Moments
,”
Eng. Struct.
,
186
, pp.
43
51
.10.1016/j.engstruct.2019.02.010
23.
Zhang
,
S.
,
Zhou
,
W.
, and
Zhang
,
S.
,
2020
, “
Development of a Burst Capacity Model for Corroded Pipelines Under Internal Pressure and Axial Compression Using Artificial Neural Network
,”
ASME
Paper No. IPC2020-9631.10.1115/IPC2020-9631
24.
Arumugam
,
T.
,
Rosli
,
M. K. A. M.
,
Karuppanan
,
S.
,
Ovinis
,
M.
, and
Lo
,
M.
,
2020
, “
Burst Capacity Analysis of Pipeline With Multiple Longitudinally Aligned Interacting Corrosion Defects Subjected to Internal Pressure and Axial Compressive Stress
,”
SN Appl. Sci.
,
2
(
7
), pp.
1
11
.10.1007/s42452-020-2994-7
25.
Bruère
,
V. M.
,
Bouchonneau
,
N.
,
Motta
,
R. S.
,
Afonso
,
S. M.
,
Willmersdorf
,
R. B.
,
Lyra
,
P. R. M.
,
Torres
,
J. V. S.
,
Andrade
,
E. Q.
, and
Cunha
,
D. J.
,
2019
, “
Failure Pressure Prediction of Corroded Pipes Under Combined Internal Pressure and Axial Compressive Force
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
4
), p.
172
.10.1007/s40430-019-1674-2
26.
Cunha
,
S. B.
,
Pacheco
,
M.
, and
da Silva
,
A. B.
,
2016
, “
Numerical Simulations of Burst of Corroded Pipes With Thermally Induced Compressive Axial Strain
,”
ASME
Paper No. IPC2016-64061.10.1115/IPC2016-64061
27.
Zhang
,
S.
,
2021
, “
Burst Capacity Evaluation of Corroded Pipelines Under Internal Pressure and Internal Pressure Combined With Longitudinal Compression
,”
Ph.D. thesis
,
Western University
, London, ON, Canada.https://ir.lib.uwo.ca/etd/7700
28.
Dassault Systèmes
,
D. S.
,
2016
, “
Abaqus Analysis User's Guide
,” Abaqus Documentation, Simulia Corp., Waltham, MA, Report.
29.
Wang
,
L.
, and
Zhang
,
Y.
,
2011
, “
Plastic Collapse Analysis of Thin-Walled Pipes Based on Unified Yield Criterion
,”
Int. J. Mech. Sci.
,
53
(
5
), pp.
348
354
.10.1016/j.ijmecsci.2011.02.004
30.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2004
, “
Strength Criteria and Analytic Predictions of Failure Pressure in Line Pipes
,”
Int. J. Offshore Polar Eng.
,
14
(
02
), pp.
125
131
.
31.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2005
, “
Influence of Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
436
442
.10.1115/1.2042481
32.
Dowling
,
N. E.
,
2007
,
Mechanical Behavior of Materials
,
Prentice Hall
, Hoboken,
NJ
.
33.
Cronin
,
D. S.
,
2000
, “
Assessment of Corrosion Defects in Pipelines
,”
Ph.D. thesis
,
University of Waterloo
, Waterloo, ON, Canada.https://uwspace.uwaterloo.ca/bitstream/handle/10012/478/NQ51187.pdf?sequence=1
34.
Bao
,
J.
,
Zhang
,
S.
,
Zhou
,
W.
, and
Zhang
,
S.
,
2018
, “
Evaluation of Burst Pressure of Corroded Pipe Segments Using Three-Dimensional Finite Element Analyses
,”
ASME
Paper No. IPC2018-78130.10.1115/IPC2018-78130
You do not currently have access to this content.