A simplified approach is presented for the seismic performance assessment of liquid storage tanks. The proposed methodology relies on a nonlinear static analysis, in conjunction with suitable “strength ratio-ductility-period” relationships, to derive the associated structural demand for the desired range of seismic intensities. In the absence of available relationships that are deemed fit to represent the nonlinear-elastic response of liquid storage tanks, several incremental dynamic analyses are performed for variable post-yield hardening ratios and periods in order to form a set of data that enables the fitting of the response. Following the identification of common modes of failure such as elephant's foot buckling (EFB), base plate plastic rotation, and sloshing wave damage, the aforementioned relationships are employed to derive the 16%, 50%, and 84% percentiles for each of the respective response parameters. Fragility curves are extracted for the considered failure modes, taking special care to appropriately quantify both the median and the dispersion of capacity and demand. A comparison with the corresponding results of incremental dynamic analysis (IDA) reveals that the pushover approach offers a reasonable agreement for the majority of failure modes and limit states considered.

References

1.
Bursi
,
O. S.
,
Paolacci
,
F.
,
Reza
,
M. S.
,
Alessandri
,
S.
, and
Tondini
,
N.
,
2016
, “
Seismic Assessment of Petrochemical Piping Systems Using a Performance-Based Approach
,”
ASME J. Pressure Vessel Technol.
,
138
(
3
), pp.
031801
.
2.
RASOR
,
2015
Risk Assessment for the Seismic Protection of Industrial Facilities, THALES
,” RASOR, Athens, Greece, accessed Mar. 30, 2018, http://excellence.minedu.gov.gr/thales/en/thalesprojects/379422
3.
Cornell
,
C. A.
, and
Krawinkler
,
H.
,
2000
, “
Progress and Challenges in Seismic Performance Assessment
,”
PEER Cent. News
,
3
(
2
), pp.
1
4
.https://peer.berkeley.edu/news/2000spring/performance.html
4.
Kohrangi
,
M.
,
Bazzurro
,
P.
, and
Vamvatsikos
,
D.
,
2016
, “
Vector and Scalar IMs in Structural Response Estimation—Part II: Building Demand Assessment
,”
Earthquake Spectra
,
32
(
3
), pp.
1525
1543
.
5.
Kazantzi
,
A. K.
, and
Vamvatsikos
,
D.
,
2015
, “
Intensity Measure Selection for Vulnerability Studies of Building Classes
,”
Earthquake Eng. Struct. Dyn.
,
44
(
15
), pp.
2677
2694
.
6.
Bakalis
,
K.
,
Fragiadakis
,
M.
, and
Vamvatsikos
,
D.
,
2017
, “
Surrogate Modeling for the Seismic Performance Assessment of Liquid Storage Tanks
,”
J. Struct. Eng.
,
143
(
4
), p.
4016199
.
7.
Bakalis
,
K.
,
Vamvatsikos
,
D.
, and
Fragiadakis
,
M.
,
2017
, “
Seismic Risk Assessment of Liquid Storage Tanks Via a Nonlinear Surrogate Model
,”
Earthquake Eng. Struct. Dyn.
,
46
(
15
), pp.
2851
2868
.
8.
Vathi
,
M.
,
Karamanos
,
S. A.
,
Kapogiannis
,
I. A.
, and
Spiliopoulos
,
K. V.
,
2017
, “
Performance Criteria for Liquid Storage Tanks and Piping Systems Subjected to Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), pp.
051801
.
9.
FEMA
,
2005
, “
Improvement of Nonlinear Static Seismic Analysis Procedures
,”
Applied Technology Council for the Federal Emergency Management Agency
, Washington, DC, Report No.
FEMA 440
.https://www.fema.gov/media-library/assets/documents/855
10.
ASCE
,
2007
, “
Seismic Rehabilitation of Existing Buildings
,” American Society of Civil Engineers, Reston, VA, ASCE Standard No.
ASCE/SEI 41-06
.https://ascelibrary.org/doi/book/10.1061/9780784408841
11.
Fragiadakis
,
M.
,
Vamvatsikos
,
D.
, and
Aschheim
,
M.
,
2014
, “
Application of Nonlinear Static Procedures for the Seismic Assessment of Regular RC Moment Frame Buildings
,”
Earthquake Spectra
,
30
(
2
), pp.
767
794
.
12.
Malhotra
,
P. K.
, and
Veletsos
,
A. S.
,
1994
, “
Uplifting Response of Unanchored Liquid‐Storage Tanks
,”
J. Struct. Eng.
,
120
(
12
), pp.
3525
3547
.
13.
Vathi
,
M.
, and
Karamanos
,
S. A.
,
2017
, “
A Simple and Efficient Model for Seismic Response and Low-Cycle Fatigue Assessment of Uplifting Liquid Storage Tanks
,”
J. Loss Prev. Process Ind.
, (in press).
14.
Cortes
,
G.
, and
Prinz
,
G. S.
,
2017
, “
Seismic Fragility Analysis of Large Unanchored Steel Tanks Considering Local Instability and Fatigue Damage
,”
Bull. Earthquake Eng.
,
15
(
3
), pp.
1279
1295
.
15.
Christopoulos
,
C.
,
Filiatrault
,
A.
,
Uang
,
C.
, and
Folz
,
B.
,
2002
, “
Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames
,”
J. Struct. Eng.
,
128
(
9
), pp.
1111
1120
.
16.
Vamvatsikos
,
D.
, and
Cornell
,
C. A.
,
2006
, “
Direct Estimation of the Seismic Demand and Capacity of Oscillators With Multi-Linear Static Pushovers Through IDA
,”
Earthquake Eng. Struct. Dyn.
,
35
(
9
), pp.
1097
1117
.
17.
Miranda
,
E.
,
2000
, “
Inelastic Displacement Ratios for Structures on Firm Sites
,”
J. Struct. Eng.
,
126
(
10
), pp.
1150
1159
.
18.
CEN
,
2005
, “
Eurocode 8—Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings
,” European Committee for Standardization, Brussels, Belgium, Standard No.
EN 1998-3
.http://civil.emu.edu.tr/courses/civl471/1998-3-2005.pdf
19.
Veletsos
,
A. S.
, and
Tang
,
Y.
,
1990
, “
Soil-Structure Interaction Effects for Laterally Excited Liquid Storage Tanks
,”
Earthquake Eng. Struct. Dyn.
,
19
(
4
), pp.
473
496
.
20.
Phan
,
H. N.
,
Paolacci
,
F.
, and
Mongabure
,
P.
,
2017
, “
Nonlinear Finite Element Analysis of Unanchored Steel Liquid Storage Tanks Subjected to Seismic Loadings
,”
ASME
Paper No. PVP2017-65814.
21.
Ozdemir
,
Z.
,
Souli
,
M.
, and
Fahjan
,
Y. M.
,
2010
, “
Application of Nonlinear Fluid–Structure Interaction Methods to Seismic Analysis of Anchored and Unanchored Tanks
,”
Eng. Struct.
,
32
(
2
), pp.
409
423
.
22.
Virella
,
J. C.
,
Godoy
,
L. A.
, and
Suárez
,
L. E.
,
2006
, “
Dynamic Buckling of Anchored Steel Tanks Subjected to Horizontal Earthquake Excitation
,”
J. Constr. Steel Res.
,
62
(
6
), pp.
521
531
.
23.
Buratti
,
N.
, and
Tavano
,
M.
,
2014
, “
Dynamic Buckling and Seismic Fragility of Anchored Steel Tanks by the Added Mass Method
,”
Earthquake Eng. Struct. Dyn.
,
43
(
1
), pp.
1
21
.
24.
CEN
,
2006
, “
Eurocode 8: Design of Structures for Earthquake Resistance–Part 4: Silos, Tanks and Pipelines
,” European Committee for Standardization, Brussels, Belgium, Standard No. EN 1998-4.
25.
API,
2007
, “
Seismic Design of Storage Tanks—Appendix E, Welded Steel Tanks for Oil Storage
,” 11th ed., American Petroleum Institute, Washington, DC, Standard No. API 650.
26.
Malhotra
,
P. K.
,
2000
, “
Practical Nonlinear Seismic Analysis of Tanks
,”
Earthquake Spectra
,
16
(
2
), pp.
473
492
.
27.
Bakalis
,
K.
,
Vamvatsikos
,
D.
, and
Fragiadakis
,
M.
,
2015
, “
Seismic Fragility Assessment of Steel Liquid Storage Tanks
,”
ASME
Paper No. PVP2015-45370.
28.
Taniguchi
,
T.
,
2004
, “
Experimental and Analytical Studies of Rocking Mechanics of Unanchored Flat-Bottom Cylindrical Shell Model Tanks
,”
ASME
Paper No. PVP2004-2913.
29.
Taniguchi
,
T.
,
2005
, “
Rocking Mechanics of Flat-Bottom Cylindrical Shell Model Tanks Subjected to Harmonic Excitation
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
373
386
.
30.
Cortés
,
G.
,
Nussbaumer
,
A.
,
Berger
,
C.
, and
Lattion
,
E.
,
2011
, “
Experimental Determination of the Rotational Capacity of Wall-to-Base Connections in Storage Tanks
,”
J. Constr. Steel Res.
,
67
(
7
), pp.
1174
1184
.
31.
Rotter
,
J. M.
,
2006
, “
Elephant's Foot Buckling in Pressurised Cylindrical Shells
,”
Stahlbau
,
75
(
9
), pp.
742
747
.
32.
FEMA
,
2012
, “
Seismic Performance Assessment of Buildings
,”
Applied Technology Council for the Federal Emergency Management Agency
, Washington, DC, Report No.
FEMA P-58
.https://www.fema.gov/media-library-data/1396495019848-0c9252aac91dd1854dc378feb9e69216/FEMAP-58_Volume1_508.pdf
33.
Vamvatsikos
,
D.
, and
Cornell
,
C. A.
,
2002
, “
Incremental Dynamic Analysis
,”
Earthquake Eng. Struct. Dyn.
,
31
(
3
), pp.
491
514
.
34.
Ancheta
,
T.
,
Darragh
,
R.
,
Stewart
,
J.
,
Seyhan
,
E.
,
Silva
,
W.
,
Chiou
,
B.
,
Wooddell
,
K.
,
Graves
,
R.
,
Kottke
,
A.
,
Boore
,
D.
,
Kishida
,
T.
, and
Donahue
,
J.
,
2013
, “
PEER NGA-West2 Database
,” Pacific Earthquake Engineering Research Center, Berkeley, CA, Technical Report No. PEER 2013/03.
35.
Ruiz-García
,
J.
, and
Miranda
,
E.
,
2007
, “
Probabilistic Estimation of Maximum Inelastic Displacement Demands for Performance-Based Design
,”
Earthquake Eng. Struct. Dyn.
,
36
(
9
), pp.
1235
1254
.
36.
Vidic
,
T.
,
Fajfar
,
P.
, and
Fischinger
,
M.
,
1994
, “
Consistent Inelastic Design Spectra: Strength and Displacement
,”
Earthquake Eng. Struct. Dyn.
,
23
(
5
), pp.
507
521
.
37.
Veletsos
,
A.
, and
Newmark
,
N. M.
,
1960
, “
Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motions
,”
Second World Conference on Earthquake Engineering
, Tokyo, Japan, pp.
895
912
.http://www.iitk.ac.in/nicee/wcee/article/vol.2_session2_895.pdf
38.
Newmark
,
N.
, and
Hall
,
W.
,
1982
,
Earthquake Spectra and Design
,
Earthquake Engineering Research Institute, University of California at Berkeley
,
Berkeley, CA
.
39.
Malhotra
,
P. K.
,
1997
, “
Seismic Response of Soil-Supported Unanchored Liquid-Storage Tanks
,”
J. Struct. Eng.
,
123
(
4
), pp.
440
450
.
40.
Rahgozar
,
N.
,
Moghadam
,
A. S.
, and
Aziminejad
,
A.
,
2016
, “
Inelastic Displacement Ratios of Fully Self-Centering Controlled Rocking Systems Subjected to Near-Source Pulse-like Ground Motions
,”
Eng. Struct.
,
108
(
2016
), pp.
113
133
.
41.
CEN
,
2004
, “
Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings
,” Comité Européen de Normalisation,
Brussels, Belgium
, Standard No.
EN 1998-1
.http://files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/Documentos%20de%20acesso%20remoto/Eurocode-8-1-Earthquakes-general.pdf
42.
Bakalis
,
K.
, and
Vamvatsikos
,
D.
,
2017
, “
Seismic Fragility Functions Via Nonlinear Response History Analysis
,”
ASCE J. Struct. Eng.
, (accepted).
43.
Luco
,
N.
, and
Cornell
,
C. A.
,
2007
, “
Structure-Specific Scalar Intensity Measures for Near-Source and Ordinary Earthquake Ground Motions
,”
Earthquake Spectra
,
23
(
2
), pp.
357
392
.
44.
Bakalis
,
K.
,
Kohrangi
,
M.
, and
Vamvatsikos
,
D.
,
2017
, “
Seismic Intensity Measures for Liquid Storage Tanks
,”
Earthquake Eng. Struct. Dyn.
, (accepted).
45.
Phan
,
H. N.
, and
Paolacci
,
F.
,
2016
, “
Efficient Intensity Measures for Probabilistic Seismic Response Analysis of Anchored above-Ground Liquid Steel Storage Tanks
,”
ASME
Paper No. PVP2016-63103.
46.
Cornell
,
C. A.
,
Jalayer
,
F.
,
Hamburger
,
R. O.
, and
Foutch
,
D.
,
2002
, “
Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines
,”
J. Struct. Eng.
,
128
(
4
), pp.
526
533
.
You do not currently have access to this content.