NIST in Boulder, CO investigated the correlations between impact test results obtained from standard, full-size Charpy V-notch (CVN) specimens and specimens with reduced thickness (subsize Charpy V-notch specimens (SCVN)) or reduced or scaled cross section dimensions (miniaturized Charpy V-notch specimens (MCVN)). A database of instrumented impact test results was generated from four line pipe steels: two quenched alloy steels, a tempered alloy steel, and a 18 Ni maraging steel. Correlations between specimen types were established and compared with the previously published relationships, considering absorbed energy (KV), ductile-to-brittle transition temperature (DBTT), and upper shelf energy (USE). Acceptable correlations were found for the different parameters, even though the uncertainty of predictions appears exacerbated by the expected significant experimental scatter. Furthermore, we report on the development of MCVN specimens for the indirect verification of small-scale pendulum machines (with potential energies between 15 J and 50 J), which cannot be verified with full-size verification specimens. Small-scale pendulum machines can now be verified at room temperature with certified reference specimens of KLST type (3 mm × 4 mm × 27 mm), supplied by NIST at three certified KV levels (low energy (LL), 1.59 J; high energy (HH), 5.64 J; and super-high (SH) energy, 10.05 J). These specimens can also be used to verify the performance of instrumented Charpy strikers through certified maximum force values. Certified reference values for both KV and maximum force were established by means of an interlaboratory comparison (Round-Robin), which involved nine qualified and experienced international laboratories.

References

1.
Towers
,
O. L.
,
1986
, “
Testing Sub-Size Charpy Specimens—Part 3: The Adequacy of Current Code Requirements
,”
Met. Constr.
,
18
, pp.
319R
325R
.
2.
Lucon
,
E.
,
McCowan
,
C. N.
, and
Santoyo
,
R. L.
,
2014
, “
Impact Characterization of Line Pipe Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens
,” NIST, Boulder, CO, NIST Technical Note 1865.
3.
Lucon
,
E.
,
McCowan
,
C. N.
, and
Santoyo
,
R. L.
,
2014
, “
Impact Characterization of 4340 and T200 Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens
,” NIST, Boulder, CO, NIST Technical Note 1858.
4.
ASTM E23-12c
, “
Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
,”
ASTM Book of Standards
, Vol. 03.01,
ASTM International
,
West Conshohocken, PA
.
5.
Oldfield
,
W.
,
1975
, “
Curve Fitting Impact Test Data: A Statistical Procedure
,”
ASTM Standardization News
, American Society for Testing and Materials, Philadelphia, PA, pp.
24
29
.
6.
ASTM E2298-13a
, “
Standard Test Method for Instrumented Impact Testing of Metallic Materials
,”
ASTM Book of Standards
, Vol. 03.01,
ASTM International
,
West Conshohocken, PA
.
7.
ISO 14556
:
2000
,
Steel—Charpy V-Notch Pendulum Impact Test—Instrumented Test Method
,
International Standards Organization
,
Geneva, Switzerland
.
8.
Zeno
,
R. S.
, and
Dolby
,
J. L.
,
1953
, “
The Effect of Specimen Geometry on Impact Transition Temperature
,”
Weld. Res.
, pp.
190s
197s
.
9.
Zeno
,
R. S.
,
1956
, “
Effect of Specimen Width on the Notched Bar Impact Properties of Quenched-and-Tempered and Normalized Steels
,”
Symposium on Impact Testing
,
F.
Tatnall
, ed.,
ASTM
,
Philadelphia, PA
, ASTM STP 176, pp.
59
69
.
10.
Curll
,
C. H.
, and
Orner
,
G. M.
,
1958
, “
Correlation of Selected Subsize Charpy Bars Versus the Standard Charpy Bar
,” Watertown Arsenal Laboratories, Watertown, MA,
Technical Report No. 112/91
.
11.
Curll
,
C. H.
,
1959
, “
Subsize Charpy Correlation With Standard Charpy
,” Watertown Arsenal Laboratories, Watertown, MA, Technical Report No. 112/95.
12.
McNicol
,
R. C.
,
1965
, “
Correlation of Charpy Test Results for Standard and Nonstandard Size Specimens
,”
Weld. Res.
, pp.
383s
393s
.
13.
Towers
,
O. L.
,
1983
, “
Charpy V-Notch Tests: Influences of Striker Geometry and of Specimen Thickness
,” The Welding Institute, Cambridge, UK, Research Report No. 219/1983.
14.
Towers
,
O. L.
,
1986
, “
Testing Sub-Size Charpy Specimens—Part 1: The Influence of Thickness on the Ductile/Brittle Transition
,”
Met. Constr.
,
18
, pp.
171R
176R
.
15.
Wallin
,
K.
,
1994
, “
Methodology for Selecting Charpy Toughness Criteria for Thin High Strength Steels—Part 1: Determining the Fracture Toughness
,” Jernkontorets Forskning, Espoo, Finland, Report No. 4013/89.
16.
TWI Knowledge Summary
,
2011
,
Sub-Size Charpy Specimens
,
The Engineering Institution for Welding and Joining Professionals, TWI, Ltd.
,
Cambridge, UK
.
17.
Corwin
,
W. R.
,
Klueh
,
R. L.
, and
Vitek
,
J. M.
,
1984
, “
Effect of Specimen Size and Nickel Content on the Impact Properties of 12 Cr-1 MoVW Ferritic Steel
,”
J. Nucl. Mater.
,
122
(
1–3
), pp.
343
348
.
18.
Corwin
,
W. R.
, and
Hougland
,
A. M.
,
1986
, “
Effect of Specimen Size and Material Condition on the Charpy Impact Properties of 9Cr-1Mo-V-Nb Steel
,”
The Use of Small-Scale Specimens for Testing Irradiated Material
,
W. R.
Corwin
, and
G. E.
Lucas
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 888, pp.
325
338
.
19.
Lucas
,
G. E.
,
Odette
,
G. R.
,
Sheckherd
,
J. W.
,
McConnell
,
P.
, and
Perrin
,
J.
,
1986
, “
Subsized Bend and Charpy V Notch Specimens for Irradiated Testing
,”
The Use of Small-Scale Specimens for Testing Irradiated Material
,
W. R.
Corwin
, and
G. E.
Lucas
, eds.,
ASTM
,
Philadelphia
, ASTM STP 888, pp.
304
324
.
20.
Lucas
,
G. E.
,
Odette
,
G. R.
,
Sheckherd
,
J. W.
, and
Krishnadev
,
M. R.
,
1986
, “
Recent Progress in Subsized Charpy Impact Specimen Testing for Fusion Reactor Materials Development
,”
Fusion Technol.
,
10
(3P2A), pp.
728
733
.
21.
Louden
,
B. S.
,
Kumar
,
A. S.
,
Garner
,
F. A.
,
Hamilton
,
M. L.
, and
Hu
,
W. L.
,
1988
, “
The Influence of Specimen Size on Charpy Impact Testing of Unirradiated HT-9
,”
J. Nucl. Mater.
,
155–157
(2), pp.
662
667
.
22.
Kayano
,
H.
,
Kurishita
,
H.
,
Kimura
,
A.
,
Narui
,
M.
,
Yamazaki
,
M.
, and
Suzuki
,
Y.
,
1991
, “
Charpy Impact Testing Using Miniature Specimens and Its Application to the Study of Irradiation Behavior of Low-Activation Ferritic Steels
,”
J. Nucl. Mater.
,
179–181
(1), pp.
425
488
.
23.
Sokolov
,
M. A.
, and
Alexander
,
D. J.
,
1997
, “
An Improved Correlation Procedure for Subsize and Full-Size Charpy Impact Specimen Data
,” Oak Ridge National Laboratory, Oak Ridge, TN,
Report No. NUREG/CR-6379, ORNL-6888
.
24.
Lucon
,
E.
,
Chaouadi
,
R.
,
Fabry
,
A.
,
Puzzolante
,
J.-L.
, and
van Walle
,
E.
,
2000
, “
Characterizing Material Properties by the Use of Full-Size and Subsize Charpy Tests: An Overview of Different Correlation Procedures
,”
Pendulum Impact Testing: A Century of Progress
,
T. A.
Siewert
, and
M. P.
Manahan
, eds.,
ASTM International
,
West Conshohocken, PA
, ASTM STP 1380, pp.
146
163
.
25.
ISO 5725-2
:
1994
,
Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method
,
International Standards Organization
,
Geneva, Switzerland
.
26.
ASTM E691-14
, “
Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
,”
ASTM Book of Standards
, Vol.
14.02
,
ASTM International
,
West Conshohocken, PA
.
27.
McCowan
,
C. N.
,
Siewert
,
T. A.
, and
Vigliotti
,
D. P.
,
2003
, “
The NIST Charpy V-Notch Verification Program: Overview and Operating Procedures
,” Charpy Verification Program: Reports Covering 1989-2002, NIST Boulder, CO,
Technical Note 1500-9
, pp.
3
42
.
28.
Lucon
,
E.
,
McCowan
,
C. N.
,
Santoyo
,
R. L.
, and
Splett
,
J. D.
,
2013
, “
Certification Report for SRM 2216, 2218, 2219: KLST (Miniaturized) Charpy V-Notch Impact Specimens
,” NIST, Boulder, CO,
Special Publication No. 260-180
.
29.
Lucon
,
E.
,
McCowan
,
C. N.
,
Santoyo
,
R. L.
, and
Splett
,
J. D.
,
2015
, “
Certified KLST Miniaturized Charpy Specimens for the Indirect Verification of Small-Scale Impact Machines
,”
Small Specimen Test Techniques
, Vol.
6
,
M. A.
Sokolov
, and
E.
Lucon
, eds.,
ASTM International
,
West Conshohocken, PA
, ASTM STP 1576, pp.
1
20
.
You do not currently have access to this content.