This paper describes the structure and application of a software system that automates the fatigue initiation and crack propagation analysis based on finite element method (FEM). The system automatically performs necessary procedures to track propagation history of cracks: insertion of a crack and updating of three-dimensional (3D) finite element mesh in accordance with the crack propagation. The system is equipped with a function to automatically perform fatigue analyses using the stress–strain histories at nodes of a 3D FEM model. Some analyses for several examples were carried out for validation. The important example is the surface crack propagation in steel pipes with residual stress.
Issue Section:
Materials and Fabrication
References
1.
Toyosada
, M.
, and Gotoh
, K.
, 2004
, “The Significance of Plastic Zone Growth Under Cyclic Loading and Crack Opening/Closing Model in Fatigue Crack Propagation
,” Proceedings of Fourth International Conference on Materials Structure and Micromechanics of Fracture
, pp. 95
–102
.2.
Koibuchi
, K.
, To
, K.
, Iida
, M.
, and Hosomi
, T.
, 1999
, “Fatigue Strength at Weld Toes and Defects of Structures Based on Cyclic Plastic Zone Size
,” Engineering Against Fatigue
,J. H.
Beynon
, M. W.
Brown
, T. C.
Lindley
, R. A.
Smith
, and B.
Tomkins
, eds., A. A, Balkema
, Rotterdam
.3.
Kikuchi
, M.
, Mattireymu
, M.
, and Sano
, H.
, 2009
, “Fatigue Crack Growth Simulation Using S-Version FEM (3rd Report, Fatigue of 3D. Surface Crack)
,” Trans. JSME Ser. A
, 75
(755
), pp. 918
–924
(in Japanese).4.
Fish
, J.
, 1992
, “The S-Version of the Finite Element Method
,” Comput. Struct.
, 43
(3
), pp. 539
–547
.10.1016/0045-7949(92)90287-A5.
Kaneko
, S.
, Okada
, H.
, and Kawai
, H.
, 2012
, “Development of Automated Crack Propagation Analysis System (Multiple Cracks and Their Coalescence)
,” J. Comput. Sci. Technol.
, 6
(3
), pp. 97
–112
.10.1299/jcst.6.976.
Okada
, H.
, Araki
, K.
, and Kawai
, H.
, 2007
, “Stress Intensity Factor Evaluation for Large Scale Finite Element Analyses (Virtual Crack Closure-Integral Method (VCCM) for Mixed Mode/Complex Shaped Crack Using Tetrahedral Finite Element)
,” Trans. JSME Ser. A
, 73
(733
), pp. 997
–1004
.10.1299/kikaia.73.9977.
Kanda
, Y.
, Okada
, H.
, Shigeo
, I.
, Tomiyama
, J.
, and Yagawa
, G.
, 2009
, “A Virtual Crack Closure-Integral Method for Generalized Finite Element With Drilling and Strain Degrees of Freedoms
,” J. Comput. Sci. Technol.
, 3
(1
), pp. 303
–314
.10.1299/jcst.3.3038.
Hou
, J.
, Goldstraw
, M.
, Maan
, S.
, and Knop
, M.
, 2001
, “An Evaluation of 3D Crack Growth Using ZENCRACK
,” Publicly Released Internal, Technical Report No. DSTO-TR-1158.9.
Rudland
, D.
, Csontos
, A.
, and Shim
, D.-J.
, 2010
, “Stress Corrosion Crack Shape Development Using AFEA
,” ASME J. Pressure Vessel Technol.
, 132
(1
), p. 011406
.10.1115/1.400034910.
Shim
, D.-J.
, Kalyanam
, S.
, Brust
, F.
, Wilkowski
, G.
, Smith
, M.
, and Goodfellow
, A.
, 2012
, “Natural Crack Growth Analysis for Circumferential and Axial PWSCC Defects in Dissimilar Metal Welds
,” ASME J. Pressure Vessel Technol.
, 134
(5
), p. 051402
.10.1115/1.400704011.
Nakamura
, H.
, Tajima
, S.
, Hazama
, O.
, and Gu
, W.
, 2014
, “Automated Fracture Mechanics and Fatigue Analyses Based on Three-Dimensional Finite Element for Welding Components
,” ASME
Paper No. PVP2014-28169. 10.1115/PVP2014-2816912.
ABAQUS Version 6.11
, 2012
, SIMULIA, Dassault Systems.13.
FINAS/STAR Version2013
, 2013
, ITOCHU Techno-Solutions Corporation (CTC).14.
Anderson
, T. L.
, 2005
, Fracture Mechanics, Fundamentals and Application
, 3rd ed., CRC Press
, Boca Raton, FL
, pp. 53
–55
, 57–58, 80–81 (in Japanese).15.
Li
, F. Z.
, Shih
, C. F.
, and Needleman
, A.
, 1985
, “A Comparison of Methods for Calculating Energy Release Rates
,” Eng. Fract. Mech.
, 21
(2), pp. 405
–421
.10.1016/0013-7944(85)90029-316.
Shih
, C. F.
, Moran
, B.
, and Nakamura
, T.
, 1986
, “Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,” Int. J. Fract.
, 30
(2), pp. 79
–102
.10.1007/BF0003401917.
Simulia
, 2011
, Abaqus 6.11 Theory Manual, Version 6.11, ABAQUS Documentation
, Dassault Systèmes
, Providence
.18.
Barsoum
, R. S.
, 1974
, “Application of Quadratic Isoparametric Finite Elements in Linear Fracture Mechanics
,” Int. J. Fract.
, 10
(4
), pp. 603
–605
.10.1007/BF0015526619.
Hellen
, T. K.
, and Blackburn
, W. S.
, 1975
, “The Calculation of Stress Intensity Factors for Combined Tensile and Shear Loading
,” Int. J. Fract.
, 11
(4
), pp. 605
–617
.10.1007/BF0011636820.
JSME
, 2005
, The Standard of Design and Construction for Fast Breeder Reactor
, JSME
, Tokyo (in Japanese).21.
ASME
, 2013
, “ASME Boiler and Pressure Vessel Code
,” Sec. VIII, Div.2, Part5, 5.5.3, Fatigue Assessment-Elastic Stress and Equivalent Stress
, ASME, New York.22.
Neuber
, H.
, 1961
, “Theory of Stress Concentration for Shear Strained Prismatical Bodies With Arbitrary Non Linear Stress Strain Law
,” ASME J. Appl. Mech.
, 28
(4), pp. 544
–550
.10.1115/1.364178023.
Koibuchi
, K.
, Kokubo
, H.
, Hatsuda
, T.
, Hattori
, T.
, and Miura
, H.
, 2009
, Introduction to Fatigue Design and Strength of Materials for Product Development
, Fig. 3.27 (in Japanese).24.
Nakamura
, H.
, Matsushima
, E.
, Okamoto
, A.
, and Umemoto
, T.
, 1986
, “Fatigue Crack Growth Under Residual Stress Field in Low-Carbon Steel
,” Nucl. Eng. Des.
, 94
(3
), pp. 241
–247
.10.1016/0029-5493(86)90006-325.
Okamoto
, A.
, Wada
, H.
, and Umemoto
, T.
, 1986
, “IHSI Application to the Weld Joint With Small Cracks
,” Int. J. Pressure Vessels Piping
, 25
(1–4
), pp. 393
–412
.10.1016/0308-0161(86)90110-926.
Rolfe
, S. T.
, Barsom
, J. M.
, (trans. Yokobori, T., Kawasaki, T., and Watanabe, J.,) 1981
, Fracture and Fatigue Control in Structures Applications of Fracture Mechanics
, Baifukan
, Tokyo
(in Japanese).Copyright © 2015 by ASME
You do not currently have access to this content.