This paper describes the structure and application of a software system that automates the fatigue initiation and crack propagation analysis based on finite element method (FEM). The system automatically performs necessary procedures to track propagation history of cracks: insertion of a crack and updating of three-dimensional (3D) finite element mesh in accordance with the crack propagation. The system is equipped with a function to automatically perform fatigue analyses using the stress–strain histories at nodes of a 3D FEM model. Some analyses for several examples were carried out for validation. The important example is the surface crack propagation in steel pipes with residual stress.

References

1.
Toyosada
,
M.
, and
Gotoh
,
K.
,
2004
, “
The Significance of Plastic Zone Growth Under Cyclic Loading and Crack Opening/Closing Model in Fatigue Crack Propagation
,”
Proceedings of Fourth International Conference on Materials Structure and Micromechanics of Fracture
, pp.
95
102
.
2.
Koibuchi
,
K.
,
To
,
K.
,
Iida
,
M.
, and
Hosomi
,
T.
,
1999
, “
Fatigue Strength at Weld Toes and Defects of Structures Based on Cyclic Plastic Zone Size
,”
Engineering Against Fatigue
,
J. H.
Beynon
,
M. W.
Brown
,
T. C.
Lindley
,
R. A.
Smith
, and
B.
Tomkins
, eds.,
A. A, Balkema
,
Rotterdam
.
3.
Kikuchi
,
M.
,
Mattireymu
,
M.
, and
Sano
,
H.
,
2009
, “
Fatigue Crack Growth Simulation Using S-Version FEM (3rd Report, Fatigue of 3D. Surface Crack)
,”
Trans. JSME Ser. A
,
75
(
755
), pp.
918
924
(in Japanese).
4.
Fish
,
J.
,
1992
, “
The S-Version of the Finite Element Method
,”
Comput. Struct.
,
43
(
3
), pp.
539
547
.10.1016/0045-7949(92)90287-A
5.
Kaneko
,
S.
,
Okada
,
H.
, and
Kawai
,
H.
,
2012
, “
Development of Automated Crack Propagation Analysis System (Multiple Cracks and Their Coalescence)
,”
J. Comput. Sci. Technol.
,
6
(
3
), pp.
97
112
.10.1299/jcst.6.97
6.
Okada
,
H.
,
Araki
,
K.
, and
Kawai
,
H.
,
2007
, “
Stress Intensity Factor Evaluation for Large Scale Finite Element Analyses (Virtual Crack Closure-Integral Method (VCCM) for Mixed Mode/Complex Shaped Crack Using Tetrahedral Finite Element)
,”
Trans. JSME Ser. A
,
73
(
733
), pp.
997
1004
.10.1299/kikaia.73.997
7.
Kanda
,
Y.
,
Okada
,
H.
,
Shigeo
,
I.
,
Tomiyama
,
J.
, and
Yagawa
,
G.
,
2009
, “
A Virtual Crack Closure-Integral Method for Generalized Finite Element With Drilling and Strain Degrees of Freedoms
,”
J. Comput. Sci. Technol.
,
3
(
1
), pp.
303
314
.10.1299/jcst.3.303
8.
Hou
,
J.
,
Goldstraw
,
M.
,
Maan
,
S.
, and
Knop
,
M.
,
2001
, “
An Evaluation of 3D Crack Growth Using ZENCRACK
,” Publicly Released Internal, Technical Report No. DSTO-TR-1158.
9.
Rudland
,
D.
,
Csontos
,
A.
, and
Shim
,
D.-J.
,
2010
, “
Stress Corrosion Crack Shape Development Using AFEA
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011406
.10.1115/1.4000349
10.
Shim
,
D.-J.
,
Kalyanam
,
S.
,
Brust
,
F.
,
Wilkowski
,
G.
,
Smith
,
M.
, and
Goodfellow
,
A.
,
2012
, “
Natural Crack Growth Analysis for Circumferential and Axial PWSCC Defects in Dissimilar Metal Welds
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051402
.10.1115/1.4007040
11.
Nakamura
,
H.
,
Tajima
,
S.
,
Hazama
,
O.
, and
Gu
,
W.
,
2014
, “
Automated Fracture Mechanics and Fatigue Analyses Based on Three-Dimensional Finite Element for Welding Components
,”
ASME
Paper No. PVP2014-28169. 10.1115/PVP2014-28169
12.
ABAQUS Version 6.11
,
2012
, SIMULIA, Dassault Systems.
13.
FINAS/STAR Version2013
,
2013
, ITOCHU Techno-Solutions Corporation (CTC).
14.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics, Fundamentals and Application
, 3rd ed.,
CRC Press
,
Boca Raton, FL
, pp.
53
55
, 57–58, 80–81 (in Japanese).
15.
Li
,
F. Z.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1985
, “
A Comparison of Methods for Calculating Energy Release Rates
,”
Eng. Fract. Mech.
,
21
(2), pp.
405
421
.10.1016/0013-7944(85)90029-3
16.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
,
1986
, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
Int. J. Fract.
,
30
(2), pp.
79
102
.10.1007/BF00034019
17.
Simulia
,
2011
,
Abaqus 6.11 Theory Manual, Version 6.11, ABAQUS Documentation
,
Dassault Systèmes
,
Providence
.
18.
Barsoum
,
R. S.
,
1974
, “
Application of Quadratic Isoparametric Finite Elements in Linear Fracture Mechanics
,”
Int. J. Fract.
,
10
(
4
), pp.
603
605
.10.1007/BF00155266
19.
Hellen
,
T. K.
, and
Blackburn
,
W. S.
,
1975
, “
The Calculation of Stress Intensity Factors for Combined Tensile and Shear Loading
,”
Int. J. Fract.
,
11
(
4
), pp.
605
617
.10.1007/BF00116368
20.
JSME
,
2005
,
The Standard of Design and Construction for Fast Breeder Reactor
,
JSME
, Tokyo (in Japanese).
21.
ASME
,
2013
, “
ASME Boiler and Pressure Vessel Code
,” Sec. VIII, Div.2, Part5, 5.5.3,
Fatigue Assessment-Elastic Stress and Equivalent Stress
, ASME, New York.
22.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear Strained Prismatical Bodies With Arbitrary Non Linear Stress Strain Law
,”
ASME J. Appl. Mech.
,
28
(4), pp.
544
550
.10.1115/1.3641780
23.
Koibuchi
,
K.
,
Kokubo
,
H.
,
Hatsuda
,
T.
,
Hattori
,
T.
, and
Miura
,
H.
,
2009
,
Introduction to Fatigue Design and Strength of Materials for Product Development
, Fig. 3.27 (in Japanese).
24.
Nakamura
,
H.
,
Matsushima
,
E.
,
Okamoto
,
A.
, and
Umemoto
,
T.
,
1986
, “
Fatigue Crack Growth Under Residual Stress Field in Low-Carbon Steel
,”
Nucl. Eng. Des.
,
94
(
3
), pp.
241
247
.10.1016/0029-5493(86)90006-3
25.
Okamoto
,
A.
,
Wada
,
H.
, and
Umemoto
,
T.
,
1986
, “
IHSI Application to the Weld Joint With Small Cracks
,”
Int. J. Pressure Vessels Piping
,
25
(
1–4
), pp.
393
412
.10.1016/0308-0161(86)90110-9
26.
Rolfe
,
S. T.
,
Barsom
,
J. M.
, (trans. Yokobori, T., Kawasaki, T., and Watanabe, J.,)
1981
,
Fracture and Fatigue Control in Structures Applications of Fracture Mechanics
,
Baifukan
,
Tokyo
(in Japanese).
You do not currently have access to this content.