Notch stress-strain conversion (NSSC) rules are widely used to estimate nonlinear and history-dependent stress-strain behavior of the notch components or structures. This paper focuses on the estimation of stress and strain using the conventional NSSC rules and linear elastic analysis by considering the entire relaxation locus of the component during inelastic action. On the basis of local effects, net-section collapse, and reference stress, a simple method for estimating inelastic strain in the vicinity of stress concentrations is proposed. The accuracy of the method is compared with elastic-plastic finite element analysis for several notch configurations exhibiting two-dimensional and three-dimensional effects.

1.
Coffin
,
L. F.
, Jr.
, 1954, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
0097-6822,
76
, pp.
931
950
.
2.
Manson
,
S. S.
, 1953, “
Behavior of Materials Under Conditions of Thermal Stress
,” NACA Paper No. TN-2933.
3.
Gowhari-Anaraki
,
A. R.
, and
Hardy
,
S. J.
, 1991, “
Low Cycle Fatigue Life Predictions for Hollow Tubes With Axially Loaded Axisymmetric Internal Projections
,”
J. Strain Anal.
0022-4758,
26
, pp.
133
146
.
4.
Neuber
,
H.
, 1961, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Non-Linear Stress-Strain Law
,”
ASME J. Appl. Mech.
0021-8936,
28
, pp.
544
550
.
5.
Molski
,
K.
, and
Glinka
,
G.
, 1981, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
0025-5416,
50
, pp.
93
100
.
6.
Leis
,
B. N.
,
Gowda
,
C. V. B.
, and
Topper
,
T. H.
, 1973, “
Some Studies of the Influence of Localized and Gross Plasticity on the Monotonic and Cyclic Concentration Factors
,”
J. Test. Eval.
0090-3973,
1
, pp.
341
348
.
7.
Conle
,
A.
, and
Nowack
,
H.
, 1977, “
Verification of a Neuber-Based Notch Analysis by the Companion-Specimen Method
,”
Exp. Mech.
0014-4851,
17
, pp.
57
63
.
8.
Zeng
,
Z.
, and
Fatemi
,
A.
, 2001, “
Elastic-Plastic Stress and Strain Behavior at Notch Roots Under Monotonic and Cyclic Loading
,”
J. Strain Anal.
0022-4758,
36
, pp.
287
300
.
9.
Hardy
,
S. J.
, and
Gowhari-Anaraki
,
A. R.
, 1993, “
Stress and Strain Range Predictions for Axisymmetric and Two-Dimensional Components With Stress Concentrations and Comparisons With Notch Stress-Strain Conversion Rule Estimates
,”
J. Strain Anal.
0022-4758,
28
, pp.
209
221
.
10.
Glinka
,
G.
, 1985, “
Calculation of Inelastic Notch-Tip Strain-Stress Histories Under Cyclic Loading
,”
Eng. Fract. Mech.
0013-7944,
22
, pp.
839
854
.
11.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
, 1994,
High Temperature Component Life Assessment
,
Chapman and Hall
,
London
.
12.
Hoffmann
,
M.
, and
Seeger
,
T.
, 1985, “
A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strain, Part 1: Theory
,”
ASME J. Eng. Mater. Technol.
0094-4289,
107
, pp.
250
254
.
13.
Hoffmann
,
M.
, and
Seeger
,
T.
, 1985, “
A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strain, Part 2: Application and General Discussion
,”
ASME J. Eng. Mater. Technol.
0094-4289,
107
, pp.
255
260
.
14.
Hutchinson
,
J. W.
, 1968, “
Singular Behavior at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
13
31
.
15.
Walker
,
T. J.
, 1974, “
A Quantitative Strain-and-Stress State Criterion for Failure in the Vicinity of Sharp Cracks
,”
Nucl. Technol.
0029-5450,
23
, pp.
189
203
.
16.
Sharpe
,
W. N.
, Jr.
,
Yang
,
C. H.
, and
Tregoning
,
R. L.
, 1992, “
An Evaluation of the Neuber and Glinka Relations for Monotonic Loading
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
50
56
.
17.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
154
160
.
18.
Adibi-Asl
,
R.
, and
Seshadri
,
R.
, 2007, “
Limit Load Analysis of Cracked Components Using the Reference Volume Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
129
, pp.
391
399
.
19.
ANSYS, Inc.
, 2005, “
Release 10.0 Theory Reference
,” ANSYS Inc., Canonsburg, PA.
20.
Kaliszky
,
S.
, 1989,
Plasticity: Theory and Engineering Applications
,
Elsevier
,
Amsterdam
.
21.
Lazzarin
,
P.
, and
Livieri
,
P.
, 1997, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
231
238
.
22.
Seshadri
,
R.
, and
Adibi-Asl
,
R.
, 2007, “
Limit Loads of Pressure Components Using the Reference Two-Bar Structure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
129
, pp.
280
286
.
23.
Seshadri
,
R.
, and
Hossain
,
M. M.
, 2009, “
Simplified Limit Load Determination Using the mα-Tangent Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
, p.
021213
.
24.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
, 1997, “
Lower Bound Limit Loads Using Variational Concepts: The mα-Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
93
106
.
You do not currently have access to this content.