Constant coefficient one-dimensional linear hyperbolic systems of partial differential equations (PDEs) are often used for description of fluid-structure interaction (FSI) phenomena during transient conditions in piping systems. In the past, these systems of equations have been numerically solved with method of characteristics (MOCs). The MOC method is actually the most efficient and accurate method for description of the single-phase transient in the cold liquid where the constant coefficient mathematical model describes phenomenon with sufficient accuracy. In energy production systems where hot pressurized liquid is used for heat transfer between the heat source and the steam generator, more complex and nonlinear mathematical models are needed to describe transient flow and these models cannot be solved with MOC method because the models are not constant. In addition, the MOC method can be used for pipes having discontinuities like elbows, geometrical changes, material properties changes, etc., but only with some extra numerical modeling. An interesting alternative is explicit characteristic upwind numerical method, known as Godunov’s method that is frequently used for nonlinear systems or systems where properties change with position. In the present study, applicability of the Godunov’s method for the FSI analyses is tested with eight first order PDEs mathematical model. The conventional linear mathematical model is improved with convective term that makes the system nonlinear and additional terms that enable simulations of the FSI in arbitrarily shaped piping systems located in a plane. Two PDEs describe pressure waves in the single-phase fluid and six PDEs describe axial, lateral, and rotational stress waves in the pipe. The applied system of equations has stiff source terms. This numerical problem is solved introducing implicit iterations. The proposed model is verified with a rod impact experiment that is carried out on single-elbow pipe hanging on wires. Godunov’s method is found as a very promising numerical method for simulations of the FSI problems.

1.
Tijsseling
,
A. S.
, 1996, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
0889-9746,
10
, pp.
109
146
.
2.
Lavooij
,
C. S. W.
, and
Tijsseling
,
A. S.
, 1991, “
Fluid-Structure Interaction in Liquid-Filled Piping Systems
,”
J. Fluids Struct.
0889-9746,
5
, pp.
573
595
.
3.
Casadei
,
F.
,
Halleux
,
J. P.
,
Sala
,
A.
, and
Chille
,
F.
, 2001, “
Transient Fluid-Structure Interaction Algorithms for Large Industrial Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3081
3110
.
4.
Tiselj
,
I.
,
Černe
,
G.
,
Horvat
,
A.
,
Gale
,
J.
,
Parzer
,
I.
,
Giot
,
M.
,
Seynhaeve
,
J. M.
,
Kucienska
,
B.
, and
Lemonnier
,
H.
, 2004, “
WAHA3 Code Manual
,” WAHALoads Project Deliverable D10, Ljubljana, Download: http://www.rcp.ijs.si/jgale/WAHA.pdfhttp://www.rcp.ijs.si/jgale/WAHA.pdf.
5.
Wylie
,
E. B.
, and
Streeter
,
V. L.
, 1978,
Fluid Transients
,
McGraw-Hill
,
New York
.
6.
Wiggert
,
D. C.
, 1986, “
Coupled Transient Flow and Structural Motion in Liquid-Filled Piping Systems: A Survey
,”
Proceedings of the ASME Pressure Vessels in Piping Conference
, Paper No. 86-PVP-4.
7.
Wiggert
,
D. C.
, and
Tijsseling
,
A. S.
, 2001, “
Fluid Transients and Fluid-Structure Interaction in Flexible Liquid-Filled Piping
,”
Appl. Mech. Rev.
0003-6900,
54
(
5
), pp.
455
481
.
8.
Païdoussis
,
M. P.
, 1998,
Fluid-Structure Interactions: Slender Structures and Axial Flow
,
Academic
,
San Diego
, Vol.
1
.
9.
Païdoussis
,
M. P.
, 2004,
Fluid-Structure Interactions: Slender Structures and Axial Flow
,
Elsevier
,
London
, Vol.
2
.
10.
Zhang
,
L.
,
Tijsseling
,
A. S.
, and
Vardy
,
A. E.
, 1999, “
FSI Analysis of Liquid-Filled Pipes
,”
J. Sound Vib.
0022-460X,
224
(
1
), pp.
69
99
.
11.
Erath
,
W.
,
Nowotny
,
B.
, and
Maetz
,
J.
, 1999, “
Modeling the FSI Produced by a Water Hammer During Shutdown of High-Pressure Pumps
,”
Nucl. Eng. Des.
0029-5493,
193
, pp.
283
296
.
12.
Giot
,
M.
,
Prasser
,
H. M.
,
Castrillo
,
F.
,
Dudlik
,
A.
,
Ezsol
,
G.
,
Jeschke
,
J.
,
Lemonnier
,
H.
,
Rubbers
,
A.
,
Tiselj
,
I.
,
Van Hoove
,
W.
, and
Potapov
,
S.
, 2003, “
Two-Phase Flow Water Hammer Transients and Induced Loads on Materials and Structures of Nuclear Power Plants (WAHALoads)
,”
FISA 2003
, EU Research in Reactor Safety, pp.
523
528
.
13.
Skalak
,
R.
, 1956, “
An Extension of the Theory of Waterhammer
,”
Trans. ASME
0097-6822,
78
, pp.
105
116
.
14.
Walker
,
J. S.
, and
Phillips
,
J. W.
, 1977, “
Pulse Propagation in Fluid-Filled Tubes
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
31
35
.
15.
Valentin
,
R. A.
,
Phillips
,
J. W.
, and
Walker
,
J. S.
, 1979, “
Reflection and Transmission of Fluid Transients at an Elbow
,” Transactions of SMiRT5, Paper No. B 2-6.
16.
Wiggert
,
D. C.
,
Hatfield
,
F. J.
, and
Stuckenbruck
,
S.
, 1987, “
Analysis of Liquid and Structural Transients in Piping by the Method of Characteristics
,”
ASME J. Fluids Eng.
0098-2202,
109
, pp.
161
165
.
17.
Fan
,
D.
, and
Tijsseling
,
A. S.
, 1992, “
Fluid-Structure Interaction With Cavitation in Transient Pipe Flows
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
286
274
.
18.
Burmann
,
W.
, 1975, “
Water Hammer in Coaxial Pipe Systems
,”
J. Hydr. Div.
0044-796X,
101
, pp.
699
715
.
19.
Tijsseling
,
A. S.
, and
Lavooij
,
C. S. W.
, 1997, “
Water Hammer With Fluid-Structure Interaction
,”
Appl. Sci. Res.
0003-6994,
47
, pp.
273
285
.
20.
Elansary
,
A. S.
, and
Contractor
,
D. N.
, 1994, “
Valve Closure: Method for Controlling Transients
,”
ASME J. Pressure Vessel Technol.
0094-9930,
116
(
4
), pp.
437
442
.
21.
Schwarz
,
W.
, 1978, “
Waterhammer Calculations Taking Into Account the Radial and Longitudinal Displacements of the Pipe Wall
,” Ph.D thesis, Universitat Stuttgart, Stuttgart, in German.
22.
Hu
,
C. K.
, and
Phillips
,
J. W.
, 1981, “
Pulse Propagation in Fluid-Filled Elastic Curved Tubes
,”
ASME J. Pressure Vessel Technol.
0094-9930,
103
, pp.
43
49
.
23.
Tijsseling
,
A. S.
,
Vardy
,
A. E.
, and
Fan
,
D.
, 1996, “
Fluid-Structure Interaction and Cavitation in Single-Elbow Pipe System
,”
J. Fluids Struct.
0889-9746,
10
, pp.
395
420
.
24.
Joung
,
I.
, and
Shin
,
Y. S.
, 1985, “
A New Model on Transient Wave Propagation in Fluid-Filled Tubes
,”
ASME Proceedings of the Pressure Vessels and Piping Conference
, Vol.
98
, pp.
275
281
.
25.
Wilkinson
,
D. H.
, 1978, “
Acoustic and Mechanical Vibrations in Liquid-Filled Pipework Systems
,”
Proceedings of the BNES International Conference on Vibration in Nuclear Plant
, pp.
863
878
.
26.
Obradović
,
P.
, 1990, “
Fluid-Structure Interactions: An Accident Which has Demonstrated the Necessity for FSI Analysis
,”
Transactions of the 15th IAHR Symposium on Hydraulic Machinery and Cavitation
, Paper No. J2.
27.
Harvey
,
A. H.
,
Peskin
,
A. P.
, and
Klein
,
S. A.
, 2004, “
NIST Standard Reference Database 10
,” NIST/ASME Steam Properties, Version 2.21, US Department of Commerce.
28.
De Jong
,
C. A. F.
, 1994, “
Analysis of Pulsations and Vibrations in Fluid-Filled Pipe Systems
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
29.
Zhang
,
X.
,
Huang
,
S.
, and
Wang
,
Y.
, 1994, “
The FEM of Fluid Structure Interaction in Piping Pressure Transients
,”
Proceedings of the First International Conference on Flow Interaction
, pp.
532
535
.
30.
Wiggert
,
D. C.
,
Otwell
,
R. S.
, and
Hatfield
,
F. J.
, 1985, “
The Effect of Elbow Restraint on Pressure Transients
,”
ASME J. Fluids Eng.
0098-2202,
107
, pp.
402
406
.
31.
Heinsbroek
,
A. G. T. J.
, 1997, “
Fluid-Structure Interactions in Non-Rigid Pipe Systems
,”
Nucl. Eng. Des.
0029-5493,
172
, pp.
123
135
.
32.
Heinsbroek
,
A. G. T. J.
, and
Kruisbrink
,
A. C. H.
, 1993, “
Fluid-Structure Interaction in Non-Rigid Pipe Systems—Large Scale Validation Experiments
,” Transactions of SMiRT12, pp.
211
216
.
33.
Lee
,
U.
, and
Kim
,
J.
, 1999, “
Dynamics of Branched Pipeline Systems Conveying Internal Unsteady Flow
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
114
121
.
34.
Abbot
,
M. B.
, and
Basco
,
D. R.
, 1989,
Computational Fluid Dynamics: An Introduction for Engineers
,
Wiley
,
Harlow, England
.
35.
Tijsseling
,
A. S.
, 2003, “
Exact Solution of Linear Hyperbolic Four-Equation System in Axial Liquid-Pipe Vibration
,”
J. Fluids Struct.
0889-9746,
18
, pp.
179
196
.
36.
Tiselj
,
I.
, and
Petelin
,
S.
, 1997, “
Modelling of Two-Phase Flow With Second-Order Accurate Scheme
,”
J. Comput. Phys.
0021-9991,
136
, pp.
503
521
.
37.
Le Veque
,
R. J.
, 2002,
Finite Volume Method for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge
.
38.
Gallouet
,
T.
, and
Masella
,
J. M.
, 1996, “
A Rough Godunov Scheme
,”
C. R. Acad. Sci. Paris
,
I-323
, pp.
77
84
.
39.
Le Veque
,
R. J.
, 1992,
Numerical Methods for Conservation Laws
, 2nd ed.,
Birkhauser
,
Basel
.
40.
Chalabi
,
A.
, and
Qiu
,
Y.
, 2000, “
Relaxation Schemes for Hyperbolic Conservation Laws With Stiff Source Terms: Application to Reacting Euler Equations
,”
J. Sci. Comput.
0885-7474,
15
(
4
), pp.
395
416
.
41.
Chalabi
,
A.
, 1999, “
Convergence of Relaxation Schemes for Hyperbolic Conservation Laws With Stiff Source Terms
,”
Math. Comput.
0025-5718,
68
(
227
), pp.
955
970
.
42.
Jin
,
S.
, and
Levermore
,
D.
, 1996, “
Numerical Schemes for Hyperbolic Conservation Laws With Stiff Relaxation Terms
,”
J. Comput. Phys.
0021-9991,
126
(
1
), pp.
449
467
.
43.
Le Veque
,
R. J.
, and
Yee
,
H. C.
, 1990, “
A Study of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms
,”
J. Comput. Phys.
0021-9991,
86
(
1
), pp.
187
210
.
44.
Tang
,
T.
,
Teng
,
Z.-H.
, and
Wang
,
J.
, 2001, “
Convergence Analysis of Relaxation Schemes for Conservation Laws With Stiff Source Terms
,”
Methods Appl. Anal.
1073-2772,
8
(
4
), pp.
667
680
.
45.
Papalexandris
,
M. V.
,
Leonard
,
A.
, and
Dimotakis
,
P. E.
, 1997, “
Unsplit Schemes for Hyperbolic Conservation Laws With Source Terms in One Space Dimension
,”
J. Comput. Phys.
0021-9991,
134
(
1
), pp.
31
61
.
46.
Tiselj
,
I.
, and
Horvat
,
A.
, 2002, “
Accuracy of the Operator Splitting Technique for Two-Phase Flow With Stiff Source Terms
,”
Proceedings of ASME FEDSM02, 2002 ASME FED Summer Meeting
.
47.
Gale
,
J.
, and
Tiselj
,
I.
, 2005, “
Applicability of the Godunov’s Method for Fundamental Four-Equation FSI Model
,”
Proceedings of International Conference on Nuclear Energy for New Europe 2005
.
48.
Von Karman
,
T.
, 1911, “
Ueber die Formanderung dunnwandiger Rohre
,”
Zeitschrift des Vereines deutscher Ingenieure
,
55
(
2
), pp.
1889
1895
.
49.
Dodge
,
W. G.
, and
Moore
,
S. E.
, 1972, “
Stress Indices and Flexibility Factors for Moment Loadings on Elbows and Curved Pipes
,”
Weld. Res. Counc. Bull.
0043-2326,
179
, pp.
1
19
.
50.
Lubis
,
A.
, and
Boyle
,
J. T.
, 2004, “
The Pressure Reduction Effect in Smooth Piping Elbows—Revisited
,”
Int. J. Pressure Vessels Piping
0308-0161,
81
, pp.
119
125
.
51.
ASME Boiler & Pressure Vessel Code, 1998, Section III, Division 1, Class 1 Components.
52.
Kannappan
,
H.
, 1986,
Introduction to Pipe Stress Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.